
204

StructureSense: Inferring Constructive Assembly Structures from User
Behaviors
XINCHENG HUANG, University of Michigan, USA and University of British Columbia, Canada
KEYLONNIE L MILLER, University of Michigan, USA
ALANSON P. SAMPLE, University of Michigan, USA
NIKOLA BANOVIC, University of Michigan, USA

(a) (b) (c) (d)

Fig. 1. StructureSense infers constructive assembly structures from user behaviors: a) the user starts an assembly task (e.g.,
building a lamp) while StructureSense tracks the structure and provides the next step instructions according to the user’s
progress (the interface is mirrored to the tablet in the bottom-right corner), b) StructureSense detects that the user has used
the wrong (top) shelf instead of the correct (middle) shelf and is alerting the user about the error, c) after fixing the error
from the previous step, the user proceeds with assembly, and d) the final furniture structure that the user assembled.

Recent advancements in object-tracking technologies can turn mundane constructive assemblies into Tangible User Interfaces
(TUI) media. Users rely on instructions or their own creativity to build both permanent and temporary structures out of such
objects. However, most existing object-tracking technologies focus on tracking structures as monoliths, making it impossible
to infer and track the user’s assembly process and the resulting structures. Technologies that can track the assembly process
often rely on specially fabricated assemblies, limiting the types of objects and structures they can track. Here, we present
StructureSense, a tracking system based on passive UHF-RFID sensing that infers constructive assembly structures from
object motion. We illustrated StructureSense in two use cases (as guided instructions and authoring tool) on two different
constructive sets (wooden lamp and Jumbo Blocks), and evaluated system performance and usability. Our results showed the
feasibility of using StructureSense to track mundane constructive assembly structures.
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and tools.
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1 INTRODUCTION
Coupling interactivity with everyday mundane physical objects, such as constructive assembly objects and
connective building blocks, can turn any such object into Tangible User Interfaces (TUI) media [20]. People use
constructive assemblies and connectable blocks to quickly build both permanent structures (e.g., playground
structures, IKEA furniture) and temporary structures (e.g., camping tents, LEGO bricks). Making mundane
physical objects interactive enables timely feedback that can help people to build quickly while avoiding building
errors [12, 25, 40], engage in learning kinetically [32, 38, 44], and rapidly prototype and share designs [27, 33, 41].

Turning constructive assemblies into TUI media requires maintaining a steady connection between the physical
structure of the assembled object and its virtual representation. However, most existing structure detection
approaches use assembly-specific fabricated connectors [1, 2, 4, 10, 20, 25, 27, 30], which do not generalize to other
constructive sets and assemblies. Touchless tracking methods (e.g., using Computer Vision [15, 24, 33, 41, 44, 45])
offer a more generalizable alternative, but are sensitive to environmental factors (e.g., occlusion and clutter).
Tagging objects using passive ultrahigh-frequency (UHF) radio-frequency identification (RFID) [17, 18, 29, 39]
are another generalizable alternative, but at a reduced sensitivity to environmental factors. However, existing
tag-based methods can only track individual objects, but not the structures that such individual objects form.
In this paper we present StructureSense (Fig. 1), a robust, low-cost system for tracking constructive assembly

structures based on passive UHF-RFID sensing. StructureSense enables tracking and inference of individual objects
that make up the structure of arbitrarily different constructive assemblies. StructureSense infers constructive
assembly structures from movements of individual objects. Each time the user moves one or more objects, our
system samples likely structures that the user has built from the posterior probability distribution of all possible
structures using Markov Chain Monte Carlo (MCMC) sampling [8, 13]. The system can then present the structures
it sampled, ordered based on their relative probability, in a simulator to the user to enable a variety of applications
from interactive assembly instructions to support rapid prototyping.

We illustrated our method in two distinct example scenarios: 1) interactive guidance, corresponding to building
in a constrained space of possible and predetermined final structure(s), and 2) authoring, corresponding to
building in an unconstrained space of undefined final structures. Our first scenario (building a floor shelf lamp)
served to establish a baseline structure tracking performance. The second scenario (creating a virtual model
with Jumbo Blocks–large physical snap-together connective blocks) was meant to push the limits of our system.
For each scenario, we implemented a prototype with distinct sets of constructive assemblies in Unity3D1 that
used StructureSense to track what the user is building. We validated the prototypes in terms of their system
performance (using benchmarking) and usability (via simplified user testing [36]).
Our findings showed that StructureSense can accurately and quickly track predetermined final structures.

We also identified a set of challenges of using StructureSense in the authoring scenario with a large sample
space of unknown final structures, with concrete steps to address those challenges. Our work contributes a
generalizable Bayesian method for design and interaction [43] for tracking structures built from mundane
constructive assemblies and connective building objects. This is the first step towards future UHF-RFID-based
structure tracking systems that will turn any sets of mundane physical objects into TUI media.

1https://unity.com/
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2 RELATED WORK
Here, we review computer technology that turns physical constructive sets into Tangible User Interfaces
(TUIs) [20]. TUIs based on constructive assemblies have shown their potential in various fields (e.g., education
[38, 44], crowd-sourced fabrication [25], rapid 3D digital content creation [27, 33, 41]). We reviewed existing
techniques that enable tracking of individual objects and structures created using physical constructive sets.

2.1 Specially Fabricated Assemblies
Specially fabricated assemblies with embedded sensors have been used to track and identify the structure geometry
during assembly tasks with high accuracy. Existing work shows that magnetic edge connectors [14], modified DC
power connectors [1, 2], and infrared LEDs and phototransistors [3] can recover the structure of a constructive
assembly by detecting the pair-wise connection between assemblies. To reduce the cost of embedding sensors
into every individual object, recent approaches [4, 10, 19, 30] have highlighted how specially designed assemblies
can pass down structural information of stacked-together blocks through capacitance to a single sensing device at
the bottom. However, existing tracking approaches based on specially fabricated assemblies lack generalizability
and cannot easily be applied to existing mundane constructive assemblies and building blocks.

2.2 Touchless Tracking
Touchless tracking methods, such as those based on radar sensing [45, 46] or Computer Vision (CV) [15, 22, 24, 33,
41, 44], enable tracking any mundane individual objects of a constructive assembly without requiring specially
fabricated assemblies or instrumentation of objects they are tracking. For example, existing CV-based methods
utilize a combination of color-based and depth-based computer vision tracking to detect individual objects and
structures. Although some methods (e.g., [22, 44]) can track structures, they track them as monoliths (i.e., they
do not track the process of creating the structure).
Therefore, it is not immediately clear how to use such methods for tracking the assembly process. Methods

such as DuploTrack [15], CubeBuilder [41], and AR-based assembly support systems [24] can track structure
creation process by comparing the point clouds of structures between steps. However, their higher computational
overhead may introduce delayed responses to user inputs. CV-based methods are also sensitive to environmental
clutter, occlusions, and fast-moving objects. This often leads to having to track one object at a time, which can
affect the richness of the interactive experience.

2.3 Tag-based Tracking
Existing methods for mundane object tracking [9, 28, 29, 39] which utilize low-cost, off-the-shelf RFID technol-
ogy [23] are impervious to environmental clutter, occlusions, and fast moving objects. For example, the can
provide real-time standalone object state tracking—IDSense [29] and RapID [39] can track if an object is still,
moving, swiped, or covered [29] and can report the object’s instant velocity [39]. However, they lack the ability
to track individual objects that make up a structure, including tracking how the individual objects are connected
and assembled together; something that is crucial for tracking and inferring what structure the user is building.

Affixing UHF-RFID tags to connective joints or surfaces of individual objects as contact switches and detecting
when an RFID tag is covered could be used to track which individual objects are assembled together using
RapID [39]. However, applying such techniques to arbitrary mundane building assemblies is challenging due
to the strict requirements regarding tag positioning for proper contact detection. For example, commonplace
building assemblies, such as Lego bricks, that are connected with studs and tubes typically have minimal contact
areas between them where it is difficult to affix RFID contact switches. RFID contact switches also do not work
for building objects connected by metal connectors (e.g., furniture parts) as metals can interfere with RF signals.
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Although embedding RFID-based contact switches into specifically manufactured assemblies [17, 18] alleviates
the RFID tag positioning problem, such approaches (much like supplementing RFID technology with embedded
sensors [16]) resemble specially fabricated assemblies and share the same challenges. Location tracking [7, 11,
31, 34] and gesture sensing [21] capabilities of RFIDs could add some of the capabilities of touch-less sensing to
RFID-based tracking. However, those existing technologies currently focus on tracking single or few objects in
controlled environments, making it difficult to track the building process of constructive assemblies.

3 DESIGN SPACE FOR TRACKING AND INFERRING CONSTRUCTIVE ASSEMBLY STRUCTURES
Here, we first define the design space for systems that can track constructive assembly structures. We identified
the dimensions of the design space based on existing design features and considerations from prior literature. We
then used the design space to call out the design trade-offs that all designs must consider, as there is not one
single design that can address all design considerations and outperform all other designs along all the dimensions.
We identified the following six design dimensions that make up our design space:

• Generalizability: The ability of a tracking method to track arbitrarily different constructive assemblies
ranging from special constructive assemblies to any mundane object. The ability to generalize to arbitrary
constructive sets is an often ignored yet important feature for assembly tracking systems. The higher
generalizability of a tracking system makes the system immediately applicable to more real-world scenarios.

• Compositionality: The ability of a tracking method to track structures from monolithic structures (i.e.,
without regard for different individual objects that make up the structure) to polylithic structures (i.e.,
being able to track individual objects that make up a structure including how the individual objects are
connected and assembled together). Assembly task tracking systems with higher compositionality are
capable of providing more informative feedback to users, enabling applications such as assembly guidance
[15] and tangible rapid 3D modeling [27, 33, 41].

• Creative Freedom: The ability of a tracking method to track structures ranging from pre-specified structures
to previously unspecified structures. Existing constructive set tracking systems [15, 38, 44] highlighted
creative freedom as a key design consideration for applications in entertainment and educational domains.

• Robustness: The ability of a system to perform against environmental factors (e.g., occlusion), ranging from
those requiring specific and perfect lab conditions (feeble) to those unaffected by real-life environments
(robust). Existing work [17, 18, 29, 39] has shown that highly robust tracking systems contribute to ease-of-
deployment and ease-of-use, as well as system stability.

• Responsiveness: The time needed to provide a response to the user’s interaction with the assemblies and
maintain a virtually seamless building process. Responsiveness of interactive systems significantly impacts
the user experience [36], where the response times range from having a delayed response (responding in
more than 10 seconds) to reacting instantaneously (responding in less than 0.1 seconds) [37].

• Accuracy: The ability of a system to identify the correct structure. This is the inverse of the error rate, and
ranges from inaccurate (no better than random coin toss) to oracles (100% accuracy). All the existing work
has identified accuracy as a key design consideration as it has a direct impact on user experience.

Dimensions such as generalizability, compositionality, and creative freedom are considerations specific to
structure sensing systems, while other dimensions such as robustness, responsiveness, and accuracy are consid-
erations shared by general TUIs. Note the existing work places emphasis on low-cost solutions [29, 39]; however,
we excluded cost as a dimension for comparison. While we recognize the importance of low-cost solutions for
adoptability of tracking systems, we found that most existing methods have comparable costs that are impacted
by a variety of factors. For example, specifically fabricated assemblies may be costly to manufacture; individual
RFID tags may be inexpensive, but they require installation of costly RFID readers; computer vision-based systems
do not require instrumentation of individual objects, but require costly camera equipment, etc..
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4 STRUCTURESENSE DESIGN OVERVIEW
Here, we detail our design of StructureSense along the design dimensions we have identified. Note that there
are always design trade-offs; although any given design can be optimized to outperform all of the existing
methods along a single dimension, no design can outperform all the other designs along all dimensions. With
such trade-offs in mind, we designed StructureSense with the goal of increasing the compositionality of existing
tag-based systems to track unspecified, polylithic structures for mundane constructive assemblies. We tried to
preserve the generalizability, robustness, responsiveness, and accuracy of existing tag-based tracking systems.

4.1 Generalizability
To achieve high generalizability, StructureSense infers the progress of assembly tasks and the structures built from
the motion of each individual object. StructureSense tracks movement of individual objects using RapID [39], thus
matching the generalizability of existing tag-based tracking systems (assuming tracked objects are instrumented
with commercially-available UHF-RFID tags). Given the wide range of RFID tag types available in the market,
typically it is not difficult to find tags with the right shape and size to fit most constructive assembly objects.

4.2 Compositionality
Existing tag-based tracking methods [29, 39] usually trade-off compositionality for high generalizability. For
example, RapID [39] provides two types of object state tracking: 1) the velocity of an object, and 2) whether an
object is covered. Object velocity tracking falls strictly under the category of monolithic (atomic) object tracking
resulting in low compositionality. On the other hand, tracking whether an object is covered could reveal some
information about the geometric relationship between different individual objects in simple structures (e.g., “2.5D”
Tic-Tac-Toe board). However, it is not immediately clear how RapID can be extended to track more complex
assemblies (including 3D assemblies) without reducing to tracking specially fabricated assemblies.
To mimic the high compositionality of specifically fabricated assemblies, StructureSense uses a software-level

knowledge of the assembly objects that includes: 1) a one-to-one mapping between constructive assembly objects
and their attached RFID-tags, 2) the connective properties of the objects (e.g. for interlocking bricks, such as
LEGO, studs connect to tubes, but studs do not connect each other), 3) the geometrical properties (e.g., block
shapes, and sizes) of each type of object to help the system detect structures that are physically possible, and 4)
geometrical key points for the assemblies to compare different structures. By default, our system automatically
adds key points between any pair of objects with connective properties that indicate that the objects can be
physically connected together. The users can then manually add more key points to reduce the number of possible
structures (e.g., when the positions of connective joints do not uniquely identify each structure in the assembly).

4.3 Creative Freedom
Unlike existing tag-based tracking systems that can only track pre-specified structures, our goal was to enable
tag-based tracking of unspecified structures. We designed StructureSense to infer the structure that the user is
building from the real-time motion profile of different objects in the constructive set. Our inference model is
based on the following insights: 1) objects that the user moves reveal information about possible objects in a
structure (e.g., the user is either installing the moving object or inspecting it), 2) the order in which the user
moves the objects implies the structure the user is assembling (e.g., some structures are more likely than others
given a certain sequence of object movements), and 3) some structures are inherently more probable than others
given the nature of assembly tasks (e.g., users may tend to close up as many (if not all) connective joints in a
structure, structures that have better balance are generally more probable than the ones that easily fall over). For
example, short individual object movement is more likely to be an inspection than an installation, while repeated
movements of different objects in unison could signal that the user assembled the objects together.
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4.4 Robustness
StructureSense preserves the robustness of existing tag-based tracking systems, such as IDSense [29] and RapID [39].
The UHF-RFID system that we use for RFID tag detection and tracking gathers radio signal strength (RSS) and
phase through radio signal making it robust for tracking occluded assembly objects. However, the size of the
construction area and the number of possible constructive assembly objects is constrained by the per-tag read rate
of the RFID readers and the range of antennas. Also, similar to other tag-based tracking systems, StructureSense
is limited to tracking constructive assemblies that are made of non-metallic materials, although it generally
tolerates small metal connective parts such as nails and screws that are not in direct contact.

4.5 Responsiveness and Accuracy
Since StructureSense uses RapID [39] for tracking motion of individual objects, its performance is proportional to
the high responsiveness and accuracy of RapID [39]. However, in addition to tracking the motion of individual
objects, StructureSense also needs to estimate the probability of different possible structures. Thus, the respon-
siveness of StructureSense is further impacted by the speed of the structure sampling method and the number
of samples required to estimate the posterior probability of different possible structures. The high accuracy
of RapID [39] minimizes the impact of compounding errors for constructive assembly structures with many
individual objects. However, the uncertainty of which structure the user is building (computed as the entropy of
the posterior probability distribution of possible structures) increases with the number of individual objects the
user moves as part of the building process. High structure uncertainty could be mitigated by asking the user to
disambiguate which structure they have built at different stages of the building process.

5 STRUCTURESENSE SYSTEM IMPLEMENTATION
We implemented StructureSense as three separate modules: 1) constructive assembly movement tracking module
based on RapID [39], 2) structure inferencemodule usingMCMC sampling [8, 13], and 3) applications programming
interface (API) module that enables interfacing between the other two modules and any user applications.

5.1 Movement Detection and Tracking
For the purpose of our system, we only need to detect if an object is moving or still. Thus, we adapted the velocity
tracking functionality of RapID [39] to enable near real-time movement tracking for individual constructive
assembly objects. RapID [39] estimates the velocity of objects based on the phase difference between consecutive
reads of a tag with a maximal latency of 200 milliseconds. We further smooth the velocity results reported by
applying a median filter with a non-overlapping slide window. The median of the velocities estimated in each
window will be the smoothed velocity. We empirically set the size of the median filter slide window to 10. With a
per-tag read rate of 60 reads/sec, such a window size allowed us to get a good velocity estimation at 6 times/sec,
which still feels instantaneous to the users [37]. Therefore, we employed an empirical velocity threshold of
30cm/s. This threshold can be customized according to desired experimental settings and movement sensitivity.
Our movement tracking module then uses real-time movement tracking to build and maintain a “movement

history”—information about when the user moved each object throughout the assembly process (Fig. 2). Each time
it detects a movement, StructureSense adds information about all objects that moved at that time to a dictionary
where the keys are the unique identifiers for each object and the values are lists of movement steps. Note that
the movement steps are not timestamps; we do not keep track of the actual time that elapsed between different
movements. Instead, we simply keep track of movement count, which the system increments by 1 whenever it
detects that one or more objects’ motion status changes from still to moving.
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Movement 1
Movement detected:

{ BottomShelf }

Movement 2
Movement detected:

{ Pole1 }

Movement 3
Movement detected:
{ BottomShelf, Pole1 }

Movement 4
Movement detected:

{ Pole2 }

. . .

Movement 𝑛 − 2
Movement detected:

{ BottomShelf,
Pole1, Pole2, Pole3 }

Movement 𝑛 − 1
Movement detected:

{ Pole4 }

Movement 𝑛
Movement detected:
{ BottomShelf, Pole1,
Pole2, Pole3 , Pole4 }

Step 1 completed
Movement
detected: ∅

Fig. 2. An example of movement detection as the user progress through an assembly task object by object. Each time the
system detects that one or more objects have moved it increments the movement time step by 1 and updates the movement
history with all the objects that moved at that time.

5.2 Structure Inference
The structure inference module infers possible structures given the observed movement history. To describe
the complex process of inferring structures, we refer to the current state of the entire constructive assembly set
as structures, which is a set of constructive assembly structures that changes as the user assembles individual
objects. During assembly, structures can contain uninstalled individual objects which we refer to as atomics, and
partially assembled groups of objects, which we refer to as composites. We refer to connective joints (e.g., studs
and tubes) as connectors. We then define configurations as possible ways that the user can assemble objects in a
composite using different connectors.

Then, the set of all possible structures given the observed movement history is defined by any combination of
different possible configurations. Note that the number of all possible configuration, and thus number of possible
structures, increases exponentially with the number of atomics that the user interacted with and their connectors.
Therefore, it is computationally infeasible to enumerate all possible structures at each step. Instead, our structure
inference algorithm explores the state space of all possible structures at each movement step by sampling from
the posterior probability distribution of possible structures given movement history.

5.2.1 Sampling Possible Structures. Since computing the posterior probability of possible structures given the
current movement history is computationally intractable, the inference module uses Bayesian inference [5, 6] to
estimate the probability of different possible structures by sampling from the posterior probability distribution of
possible structures given the object movement information using Markov Chain Monte Carlo sampling [8, 13].
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Here, we leverage the insight that the possible orientation of each building object can take in a structure is limited
for rigid constructive assemblies. This reduces the need for RFID-based localization [7, 11, 31, 34] and orientation
sensing [21] for simultaneously tracking multiple objects in real environments. Thus, we sample the probability
distributions of building object placements and orientations in a structure with properly designed prior and
likelihood functions. At each time step 𝑡 , our model for MCMC is formulated in Eq. 1, where𝑀𝑡 is the movement
history from the start of the assembly until the current movement time-step 𝑡 , and 𝑆𝑡 represents the assembled
structures at time-step 𝑡 .

𝑃 (𝑆𝑡 |𝑀𝑡 ) =
𝑃 (𝑀𝑡 |𝑆𝑡 )𝑃 (𝑆𝑡 )

𝑃 (𝑀𝑡 )
∝ 𝑃 (𝑀𝑡 |𝑆𝑡 )𝑃 (𝑆𝑡 )

(1)

Although common assembly tasks usually end up with a single structure at the end, users can create multiple
“intermediate” sub-structures during the assembly process. To account for this, each structure in 𝑆𝑡 can contain
multiple disjointed sub-structures.
Note that our sampling approach does not require full a priori knowledge of the state space of all possible

structures (e.g., the size of state space, the configurations of all possible structures). Instead, to explore the state
space using sampling, our method uses a proposal function that is capable of uniformly drawing from the state
space by simulating the combination of assemblies at the software level (see Section 5.2.3 for details) and enough
samples (determined by the MCMC algorithm chain length) to accurately estimate the posterior probability
distribution. However, the MCMC chain length is application dependent and needs to be determined according
to the constructive set it tracks (a choice that we illustrate later in Section 7).

5.2.2 Representing Configurations. Configurations are virtual representations of physical composites or atomics,
which allow our system to construct, modify, compare, and eventually sample the structures being built on the
software level. Each configuration stores the following information about a composite or atomic:

• The types and quantities of objects that each composite or atomic contains.
• The types and quantities of connectors.
• The connections between objects are stored as an undirected graph where each node represents an object
and each edge represents a connection (or a single node for atomics).

• The coordinates of key points of the composite or atomic.
Adding two configurations together is straightforward as we can simply combine information about assemblies

and connectors, and merge the graph representation of connections by adding edges. The merge between keypoint
coordinates is done by modifying the coordinates stored in one configuration relative to the other. To compare
two configurations, we first compare whether the two configurations contain the same number of individual
objects with the same types. For example, a composite containing only one individual object is different from
another composite containing two individual objects. We then compare the types of connectors used and the
number of connections made. If both return true, we compare the key points. Note that we only use object types
and quantities instead of their affixed RFID tags’ ids for comparison, such that two configurations are considered
the same as long as they look the same in reality. At the end of each structure inference, we traverse the resulting
samples and compare and merge any duplicates.

5.2.3 Structures Proposal Function. MCMC requires a proposal function to draw samples for the sampling process.
Our proposal function constructs and returns a random structures. Since any update to structures can only come
from its previous state, to generate new proposed structures, we randomly pick structures from previously sampled
structures (or initial structures with all constructive objects represented as atomics for the first step of the assembly
task) and combine two of its composites or atomics together. We assume that the user is only capable of assembling
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two parts together with one movement using both of their hands. If the combination generates a physically
possible new composite, we return the updated structures as a proposal.

5.2.4 Structures Prior Distribution. To sample from the posterior distribution of structures, MCMC needs a
prior distribution for structures. Our method is modular in that it allows for interchangeable priors (e.,g., the
prior could be specific to a particular constructive assembly or the prior could consider a general property of
constructive assembly structures). To illustrate our method, we used a general prior distribution that is applicable
across different types of constructive assemblies. To construct our prior, we considered two inherent properties
of structures: 1) the number of connectors left open (i.e. users close connectors as they build), and 2) the physical
balance of composites (i.e. users tend to build things that do not fall over). Assuming these two properties are
independent of each other, we define our prior 𝑃 (𝑆𝑡 ) in Eq. 2, where 𝑃𝑐 (𝑆𝑡 ) is the probability of structures having
a certain number of open connectors, and 𝑃𝑏 (𝑆𝑡 ) is the probability distribution considering the balance.

𝑃 (𝑆𝑡 ) = 𝑃𝑐 (𝑆𝑡 ) · 𝑃𝑏 (𝑆𝑡 ) (2)

We model 𝑃𝑐 (𝑆𝑡 ) (Eq. 3) as a zipf distribution on the number of total open connectors (denoted as ConnOpen)
offsetting the minimal possible open connectors (denoted as minConnOpen). The 𝛼 in Eq. 3 is a shape parameter
that can be set to any real number bigger than 1, which controls the decreasing rate of the function. In our
applications, we set the 𝛼 here to 2.

𝑃𝑐 (𝑆𝑡 ) = zipf(ConnOpen, 𝛼,−minConnOpen) (3)

The balance prior will only concern the composites. We calculate the distance between the central gravity
point and the center of the composite’s bottom surface. We calculate 𝑑𝑏𝑎𝑙𝑎𝑛𝑐𝑒 as projected to the ground. The
balance priori is then calculated as a normal distribution on 𝑑𝑏𝑎𝑙𝑎𝑛𝑐𝑒 in Eq. 4, where the mean is 0 and the
standard deviation 𝜎 is adjustable as a hyper-parameter. We applied the connector prior to our furniture guidance
application and applied both in the virtual Jumbo Block model creation application. For the latter, the standard
deviation is set as the distance between two adjacent connectors on the same object (which is the same across
the entire set of Jumbo Block).

𝑃𝑏 (𝑆𝑡 ) = N(𝑑𝑏𝑎𝑙𝑎𝑛𝑐𝑒 , 0, 𝜎2) (4)

5.2.5 Structures Likelihood. The likelihood function 𝑃 (𝑀𝑡 |𝑆𝑡 ) models the probability of an observed movement
given structures. We developed our likelihood functions based on the observation that recently moved objects are
more likely to participate in a new installation. Therefore, we design our likelihood functions to be probabilities
on “activeness”. We define activeness for a composite or an atomic based on when it is last updated before the
current movement step. Specifically, we traversed the movement profile of each individual object in a composite
(or just the object itself for atomics), and use the most recent time-step to evaluate its activeness. With the
𝑚𝑜𝑠𝑡𝑅𝑒𝑐𝑒𝑛𝑡𝑇𝑖𝑚𝑒𝑆𝑡𝑒𝑝 obtained, we calculate the value of 𝑟𝑒𝑐𝑒𝑛𝑐𝑦 variable as in Eq. 5.

𝑟𝑒𝑐𝑒𝑛𝑐𝑦 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒𝑆𝑡𝑒𝑝 −𝑚𝑜𝑠𝑡𝑅𝑒𝑐𝑒𝑛𝑡𝑇𝑖𝑚𝑒𝑆𝑡𝑒𝑝 (5)

We developed two probability measures for 𝑟𝑒𝑐𝑒𝑛𝑐𝑦 as shown in Eq. 6 and Eq. 7. The former favors higher
activeness and the latter favors the opposite. The 𝛽 and 𝛾 here are again the shape parameters for zipf distribution
and can be adjusted as hyper-parameters to determine the system’s sensitivity to activeness and idleness.

𝑃𝑎𝑐𝑡𝑖𝑣𝑒 = zipf(𝑟𝑒𝑐𝑒𝑛𝑐𝑦, 𝛽, 0) (6)
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𝑃𝑖𝑑𝑙𝑒 =

{zipf(−𝑟𝑒𝑐𝑒𝑛𝑐𝑦,𝛾,−10) if 𝑟𝑒𝑐𝑒𝑛𝑐𝑦 < −10
1 if 𝑟𝑒𝑐𝑒𝑛𝑐𝑦 ≥ −10 (7)

Recall that our proposal function is able to generate samples of structures in two different cases, a case where
the movement leads to an installation, and a case where it does not. The first case, which we call “installation”,
describes a situation where an object’s movement eventually leads to an update to the structures. We refer to the
second case as “inspection”, which describes the opposite situation where a moving object is eventually put back
down without being connected to anything. We designed two different likelihood functions respectively for each
of these two cases.

For cases of installation, we observed that installation is more likely to happen on the more active objects (i.e.
atomics or composites) that have recently been moved. Therefore, intuitively, at a movement time-step, if an
installation happens, the newly installed composite should come from recently moved atomics or composites,
while the other atomics and composites that did not participate in this installation should be less active. Therefore,
our likelihood function contains two activeness measures respectively for the two composites/atomics used for
the installation, denoted as 𝑆1 and 𝑆2, and one idleness measure for the rest components as a whole denoted as 𝑆3.
The final likelihood is the product of the three measures as shown in Eq. 8.

𝐿𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑃𝑎𝑐𝑡𝑖𝑣𝑒 (𝑆1) · 𝑃𝑎𝑐𝑡𝑖𝑣𝑒 (𝑆2) · 𝑃𝑖𝑑𝑙𝑒 (𝑆3) (8)

𝐿𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑃𝑖𝑑𝑙𝑒 (𝑆𝑖𝑛𝑠𝑝𝑒𝑐𝑡 ) (9)
For cases of “inspection”, inspecting the same object repeatedly and consecutively without making installation

is rare. Therefore, our likelihood function for “inspection”, shown in Eq. 9 is an idleness measure on the atomics
or composites inspected, denoted as 𝑆𝑖𝑛𝑠𝑝𝑒𝑐𝑡 . In our pilots of StructureSense, we observed that the users are
more likely to install constructive objects than to inspect them. Therefore, we adjusted the shape parameters in
Eq. 8 and Eq. 9 such that our system favors installations over inspections. Specifically, we set the 𝑧𝑖𝑝 𝑓 shape
parameters in Eq. 8 to 1.1 (such that the probability drops slower as the inactive time increases), and the 𝑧𝑖𝑝 𝑓
shape parameters in Eq. 9 to 3.

5.3 Application Programming Interface (API)
Once the MCMC sampling is complete, StructureSense stores the resulting accepted samples of structures and
their probabilities. Our system then makes these samples available to an application through an API. In the next
section, we illustrate the use of the API in two example applications that we developed.

6 EXAMPLE APPLICATIONS
In order to illustrate StructureSense and evaluate the performance and usability of our system, we developed two
example applications using Unity3D: 1) a guidance system for a furniture assembly task, and 2) an authoring
system for virtual design creation with Jumbo Blocks.

6.1 Guidance Application
Our guidance application provides interactive instructions for building pre-specified constructive assembly
structures. Interactive assembly instructions provide the user with step-by-step instructions according to their
assembly progress, making it easier to keep track of the current step. Our application can also detect potential
errors during the assembly process and guide the user on how to fix them. For our illustration, we implemented
instructions for a shelf floor lamp (Fig. 3). The floor lamp we used consisted of 12 long poles, 4 short poles, 1
bottom shelf, 3 middle shelves, and one top frame. We designed our interactive instructions based on the paper
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Fig. 3. An example constructive assembly (shelf floor lamp) that we used in our guided assembly application. Each object
(lamp part) in the assembly is tagged with an RFID.

(a) (b)

Fig. 4. The guidance application in two modes: a) the instruction mode, and b) the verification mode.

instructions that came with the product and broke the assembly procedure into 8 steps. Each of the steps involves
assembling between 1 and 4 furniture parts.
The user interface for our application (Fig. 4) had two modes: 1) the instruction mode (Fig. 4a), and 2) the

verification mode (Fig. 4b). The instruction mode presented the user with the instruction for the current assembly
step. When the user clicks on the “next” button to indicate that they completed the current step, the application
uses the StructureSense API to sample the most likely structures and checks whether the user has assembled the
structure in the step correctly by comparing the structures in the instructions with the most likely structure that
StructureSense returned. In addition to automatically entering the verification mode after completing a major
step, the user can enter the verification mode anytime by clicking on the “I think I have made a mistake” button
if they have any doubts about what they have built.

6.1.1 Helping Users Recognize and Recover from Errors. Assembly errors are inevitable on both the user’s and
the system’s part. When the guidance application catches such errors, it alerts the user when they enter the
verification mode (Fig. 5). During an assembly task and after the user completes an assembly step (Fig. 5a), our
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(a)

(b) (c)

Fig. 5. Upon completing a step in the instruction mode and clicking on the next button (highlighted with a red rectangle)
(a), the user enters the verification mode. The system detects one of two possible types of errors: (b) the user skipped or
missed a component (missing component highlighted in transparent yellow), or (c) the user used a different component than
instructed (the wrong component highlighted in red and the correct component in transparent yellow). After the user has
fixed the error, they can click on “I have fixed it!” button on the verification interface and proceed with the assembly task.

guidance application is capable of detecting the following two types of errors: 1) when the user skipped or
missed a component (Fig. 5b), and 2) when the user used a different component than instructed (Fig. 5c). In the
verification mode, correctly assembled parts are displayed in green, the missing parts in transparent yellow, and
the mistakenly installed parts in red.
The system may also make a wrong prediction about the most likely structure the user is building: 1) the

system may wrongly detect an installation error when the user installed the object correctly, or 2) the system
may fail to detect an installation error. Fig. 6 illustrates how the users can navigate themselves out of a system
error. When they notice that there is a difference between what they built and what the system infers, they can
click on the “This is not what I built” button in the verification mode (Fig. 6a). The system will then list all the
possible structures in the current state space (Fig. 6b), in the order of their inferred probability, allowing the user
to correct the system by selecting the actual structure they built from the list (Fig. 6c).

6.2 Authoring Application
Our authoring application gives the user creative freedom to assemble previously unspecified structures using
constructive virtual assemblies. Instead of providing guided instructions, the authoring application enables the
user to rapidly prototype and share designs. For our illustration, we used Jumbo Blocks, a bricks constructive set
resembling large LEGO bricks. Fig. 7 shows an example structure built with Jumbo Blocks.
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(a) (b) (c)

Fig. 6. Our system allows the user to indicate the right structure they have built when the system structure prediction is
wrong. For example, when the verification page wrongly alerts the user that the top shelf (highlighted in red) is wrongly
installed (a), the user can click on the “this is not what I built” button (highlighted in the red rectangle). The system will then
prompt the user with a list of all the possible structures from the state space ordered by their relative probability (b). The
user can click on the one that correctly represents what they actually built, and the system then returns to the verification
mode (c), where the user can now click on the “Complete” button and proceed with the assembly task.

Fig. 7. An example constructive assembly (a Jumbo Blocks duck) that we used in our authoring application. Each object
(Jumbo Block brick) in the assembly is tagged with an RFID tag.

The user interfaces for our example application (Fig. 8) feature a split screen showing: 1) a virtual representation
of the most likely current structures the user has assembled on the left, and 2) a list of other possible structures
ordered by their probability in descending order on the right. The application uses callbacks from the StructureSense
API, which fire each time that the system detects that the user added an object to the physical structure, to update
the two split screens with the latest results from StructureSense.
The user can then inspect the models in the split screens using direct manipulation (e.g., zoom in/out and

rotate the models). As long as the most likely structure on the left is what the user has built, they can simply
proceed with assembly. However, if the user notices that StructureSense has made a mistake tracking the current
structure, the user can search through the list of possible structures on the right and select the correct one. At
any point in the assembly process, the user can save their virtual structures model (e.g., to create interactive
instructions for our first application).
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Fig. 8. Authoring application interface. The left half of the interface provides a detailed view and the right half of the interface
lists all the possible structures

7 SYSTEM EVALUATION
We used our two applications to evaluate StructureSense along the design dimensions we identified in Section 3.
We first benchmarked the responsiveness and accuracy of our system for different types of structure predictions
and used the results to fine-tune our system (e.g., selected MCMC chain length). We used the fine-tuned system
to perform user evaluation of StructureSense using the simplified user testing method [36]. We then performed a
comparison of StructureSense with existing work along the dimensions of our design space.

7.1 System Benchmarking
One of our design goals is to enable high performance (i.e., high responsiveness and accuracy) of StructureSense.
The performance of StructureSense is affected by: 1) the number of objects in the constructive assembly, 2) the
number of possible connections between the objects, and 3) the number of samples required to perform structure
inference (i.e. MCMC chain length). StructureSense has no control over the first two potential bottlenecks—the
more individual objects there are and the more connectors objects have, the more possible configurations they
can be assembled into. Although StructureSense has control over the MCMC chain length (i.e., the number of
samples), the larger the space of possible structures, the more samples are needed to obtain a reasonable estimation
of the posterior probability distribution of structures. This highlights the trade-off between processing times
(responsiveness) and the uncertainty of resulting structures (which affects accuracy).

Here, we first focus on benchmarking the responsiveness of StructureSense. Though ideally, any tracking
system would react in a way that appears instantaneous to the user (e.g., in less than 0.1 seconds [37]), our goal is
to support interactions that enable the user to keep their attention on the assembly task (i.e., optimize the system
to respond in closer to a second, but no more than 10 seconds [37]). We benchmarked the two modules that our
system responsiveness is most affected by separately by measuring: 1) the time it takes to detect the movement
of different individual objects, and 2) the time to perform structure inference.
We benchmarked our system’s performance on simulated user movements from the two applications we

described in the previous section. We simulated user movements using repeated measures of actual, practiced,
expert movement data from scripted assembly tasks that one of the authors conducted using the two applications.
To obtain the eventual “simulated data”, we excluded inspections (i.e., movement histories that do not lead
to new structures) and removed any RapID tracking errors (e.g., false-positive movement detection) from the
expert movement data. We used such simulated data to avoid any measurement noise due to variance in user
performance. Feeding such simulated data back to the system allowed us to automate the system benchmarking
process without asking users to repeat the assembly processes in prolonged user study sessions.
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We implemented each of the three StructureSense modules and enabled communication between them using
network protocols. We conducted all our benchmarking experiments on a MacBook Pro 16-inch 2019 with a
2.3GHz 8-core CPU and 16GB of memory. We used an Impinj Speedway Revolution R420 UHF-RFID Reader2 and
an Impinj Far Field RFID Antenna with a maximal sensing range of approximately 10 meters.

7.1.1 Benchmarking Movement Detection. We empirically determined per-tag read rate to ensure movement
tracking performance. During early testing of our system, we observed a performance decrease when the per-tag
read dropped below 25 read/sec. The assembly tasks we used in our experiments contained up to 20 constructive
objects, with which we have a 60 read/sec per-tag read rate by setting the reader mode to “Max throughput” (FM0
encoding). We empirically estimated that our system can simultaneously track between 30 and 40 assemblies
without saturating the RF system.

The physical configuration of the environment has minimal effect on our system setup. The system is functional
as long as the space for the assembly tasks tracked is within the sensing range of the RFID antenna. We conducted
our assembly experiments on a 1.5𝑚 × 2𝑚 table and placed RFID antenna 1𝑚 from the table. We added clutter
and additional “distractor” tags into the environment to simulate adverse environmental factors; however, we
primarily evaluated the robustness of the system when the user was obstructing the “line of sight” between the
antenna and the objects in the course of the assembly process. Our final configuration resulted in movement
detection that took on average 190.38𝑚𝑖𝑙𝑙𝑖𝑠𝑒𝑐𝑜𝑛𝑑𝑠 (𝑠𝑡𝑑 = 964.7𝑚𝑖𝑙𝑙𝑖𝑠𝑒𝑐𝑜𝑛𝑑𝑠) to detect the movement state of all
individual objects in our applications (while maintaining RapID’s detection accuracy [39]).

7.1.2 Benchmarking MCMC Chain Length. The first step in configuring structure inference is to determine the
number of samples to generate. To benchmark our system’s sampling performance, we ran our structure inference
algorithm with five different MCMC chain lengths (ranging from 1, 000 to 5, 000 samples) and repeated the runs
five times. We then calculated the average time that our system took to sample from the posterior probability
distribution of structures for each movement in our “simulated data” (Fig. 9).

Our results showed that the sampling time is linearly correlated with the MCMC chain length (i.e., each sample
takes constant time, as expected). However, the sampling on average took longer to complete on data from the
authoring application (Fig. 9b) than data from the guided application (Fig. 9a) due to the former having a large
number of individual objects and possible ways to assemble them together. This is because the sampling step
includes generating possible structures using a proposal function which takes longer when the state space of
possible final structures is large.
Note that different applications may require sampling at different times during the assembly process or at

different time intervals. For example, our guidance application only needs to present the results of structure
inference when the user enters the verification mode but can keep inferring structures as the user proceeds with
the assembly. Similarly, in the authoring application, the user may build and explore a few different structures
before selecting and saving the final structure they built (which may provide even more time between different
interactions with the application).

Thus, we set the length of the MCMC chain to 2, 000 for the guidance application and 4, 000 for the authoring
application, which resulted in on average approximately 1 𝑠𝑒𝑐𝑜𝑛𝑑 and 5 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 to complete respectively (both
under the upper bound of 10 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 in accordance with our design goals). We selected the longer chain length
for the authoring application because we hypothesized that the users will have longer times between interactions,
and it could benefit from a longer chain length to explore the larger state space of possible final structures.

7.1.3 Benchmarking Structure Inference. To benchmark the responsiveness of our structure inference (now
with our selected MCMC chain length), we simulated two scenarios for each example application: 1) with user
disambiguation—the best case scenario where the user indicates correct structure they are building, and 2)
2https://www.impinj.com/products/readers/impinj-speedway
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(a) (b)

Fig. 9. Average system response time vs.MCMC chain length for: a) the guidance application, and b) the authoring application.

(a) (b) (c)

Fig. 10. Guidance application benchmarks at each assembly step: a) mean number of unique MCMC sampled structures, b)
mean sampling time, and c) entropy of the estimated posterior distribution. The figure shows results with user disambiguation
in blue and without user disambiguation in red.

without user disambiguation—the worst case scenario in which the user provides no feedback about what they
have built to the system. The presence of user disambiguation allows the system to constrain the number of
possible configurations in future steps, thus improving system response time. However, in the absence of user
disambiguation, the system’s performance will likely degrade as the number of possible configurations increases.

For each movement step in our simulated data, we repeated our structure inference ten times and computed the
mean number of different unique structures sampled using MCMC, the mean time to perform the inference, and
the mean entropy of the structures’ posterior probability distribution (Eq. 10). Note that the entropy measures
how much information the estimated posterior distribution provides about the structure that the user is building.
Thus, high entropy corresponds to high uncertainty that could potentially lead to low inference accuracy. In
the disambiguation condition, we simulated the disambiguation action every 6 movements (corresponding to an
average step size in the guidance application).

𝐻 (𝑋 ) = −
𝑛∑︁
𝑖=0

𝑃 (𝑥𝑖 )log(𝑃 (𝑥𝑖 )) (10)
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(a) (b) (c)

Fig. 11. Authoring application benchmarks at each assembly step: a) mean number of unique MCMC sampled structures, b)
mean sampling time, and c) entropy of the estimated posterior distribution. The figure shows results with user disambiguation
in blue and without user disambiguation in red.

Our system was highly responsive when inferring structures from the simulated guided assembly data (Fig. 10;
best case: mean sampling time=0.97s, std=0.27s; worst case: mean sampling time=1.22s, std=0.36s). The entropy in
the best-case scenario remained low because the user structures disambiguation constrains the structure sample
space at each next step. However, as expected, when the user disambiguation was absent, the large structure
space resulted in higher entropy, which in turn could result in lower inference accuracy.

However, the large structure space and lack of pre-specified final structures when running structure inference on
simulated authoring application data showed the limits of our system (Fig. 11). The number of different structures
that the user could build at each assembly step grew exponentially. With hundreds of possible structures at each
step, our system took longer to sample structures (mean processing time=5.39s, std=2.02s) and had higher entropy
even in the best-case scenario than in the simulated guided assembly application.

Although the response time in the best-case scenario was still within our limit of 10 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 , the mean response
time in the worst-case scenario quickly exceeded that time limit. This showed that our earlier assumption that the
authoring task could benefit from a longer MCMC chain length than the guided task was not correct. However,
our further investigation showed that reducing the MCMC chain length to increase the responsiveness of the
system in the authoring application increases the entropy, which could in turn negatively impact structure
inference accuracy. Thus, we kept our MCMC chain lengths the same before proceeding to user evaluation.

7.2 User Evaluation
We then continued our evaluation and conducted simplified user testing [36] where participants interacted with
our two example applications. We recruited 6 participants (2 female, 4 male). All of them interacted with the
guidance application, and five of them interacted with the authoring application. One of the participants left the
study early and did not interact with the authoring application. The study on average took 1 hour to complete,
and we compensated the participants $15 for taking part in the study.

7.2.1 Tasks and Procedures. Participants arrived at our lab, and before taking part in the study, they read and
understood the consent form, which detailed the study and the tasks. Only participants that consented to be
part of the study could proceed with the study task. The participants could also optionally consent to be video
recorded. The investigator then answered any questions from participants before proceeding. The investigator
then showed the participants how to interact with the applications.
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(a) (b) (c)

Fig. 12. Guidance application performance at each assembly step: a) mean number of unique MCMC sampled structures, b)
mean sampling time, and c) entropy of the estimated posterior distribution. Each line corresponds to a different participant
in our study. Note that the steps include inspections and wrong installations.

The participants first performed the guided assembly of the floor lamp. When done with the guided task,
participants performed the authoring task, where the investigator instructed the participants to create a virtual
model of a duck (Fig. 7). The participants could provide structure disambiguation in both tasks. This was implicit
in the guided application, and the investigator showed the participants how to do it in the authoring application.

The investigator instructed the participants to perform a think-aloud during the assembly tasks. Throughout
the participants’ assembly procedure, the investigator noted: 1) any usability issues that participants experienced,
and 2) whether the system correctly responded to the participant’s actions. The study software logged individual
block movements and the time the participants took to complete the assembly tasks. Upon the completion of each
assembly task, the investigator followed up with clarifying questions regarding participants’ user experience, any
prediction errors that they encountered, and any other concerns they had.
We then analyzed individual participant data. Movement data from 3 participants were corrupted due to

logging failure, which resulted in movement data from 4 participants in each condition. We aggregated the
participants’ think-aloud reflections and responses to the follow-up questions (referring to the recorded study
sessions after the user experiments when needed).

7.2.2 System Performance Results. Here, we reproduced our system benchmarks using actual participant data
(Fig. 12 and Fig. 13). Note that the participants took more steps than in the idealized assembly tasks from simulated
data because participant data contained inspections and wrong installations.
The participants took on average 576 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 (𝑠𝑡𝑑 = 126 𝑠𝑒𝑐𝑜𝑛𝑑𝑠) to complete the guided assembly task. At

each assembly step, the system remained responsive and completed structure inference in around 2 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 ,
with an exception of P3 where it took slightly longer (Fig. 12b). To complete the authoring task, the participants
on average took 782 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 (𝑠𝑡𝑑 = 67 𝑠𝑒𝑐𝑜𝑛𝑑𝑠). The median response time for each step was 5 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 , with
inference only exceeding the 10 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 threshold we set for our designs towards the end of the assembly task
for two participants.

7.2.3 Qualitative Evaluation Results. In guided assembly tasks, all the participants were able to assemble the
lamp with minimal errors. Participants made only two installation errors, and in both cases, our application
alerted them to the error, which they fixed. Our application wrongly alerted the participants about structure
differences when they completed the instructed steps correctly twice. In both cases, the system wrongly detected
object movements as “inspections”. However, the application enabled the users to quickly recover from the errors.
In all cases, the correct structure ranked second or third in the list of alternative structures.
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(a) (b) (c)

Fig. 13. Authoring application performance at each assembly step: a) mean number of unique MCMC sampled structures, b)
mean sampling time, and c) entropy of the estimated posterior distribution. Each line corresponds to a different participant
in our study. Note that the steps include inspections and wrong installations.

We followed up with the two participants who encountered the system errors (P2 and P4) regarding their
experience. Both of them reflected that it was somewhat confusing seeing the system predicting a structure
different than what they built. However, they also acknowledged that the system made it straightforward to
navigate out of such system errors.

At the end of the guided assembly tasks, we followed up with the participants regarding their experience with
the system response time, and all of the participants reported that they did not notice any latency while interacting
with the application. We attributed this to the fact that the system starts the structure inference immediately at
the beginning of each installation (i.e., when the user starts interacting with a component). Therefore, in the
guidance application, most structure predictions are finished before the corresponding installation, giving users
the experience of instant responses.

However, all five participants that interacted with the authoring application reported during their think-aloud
that system response delay was noticeable in most assembly steps. When we followed up with the participants
regarding their concerns about the delayed system response time, they commented that the experience was
“unnatural” as they needed to wait for the system to update what they were building after each assembly step.

At each step of the authoring process, the system provided median 62 alternative structures to select from.
This forced the participants to confirm their desired structures after each step, which significantly impacted the
usability of the application. The median rank of the participant-selected alternative structure was 16.5. At times,
toward the end of the assembly tasks, the participants could not find the exact virtual representation of what
they built because the number of possible structures has grown too large for the proposal function to guarantee
full coverage of the structures space. When this happened, the participants selected the closest approximation.

7.3 Comparison of StructureSense with Existing Systems
Here, we used our findings to place StructureSense in the design space we defined in Section 3 and compare it with
other existing tracking systems. In Fig. 14, we illustrate the placement of StructureSense and representative prior
systems in the design space. Note that while our design space considers all papers from our related work, our
illustration in Fig. 14 only contains a subset of representative work that allows us to clearly place StructureSense
within our design space. Specifically, in Fig. 14, we show the placement of representative systems from specifically
fabricated assemblies (CapStone [10] and RFIBricks [18]), touchless tracking systems (DuploTrack [15] and
Norilla [44]), and tag-based tracking systems (IDSense [29] and RapID [39]) to illustrate the dimensions.
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(a)

(b) (c) (d) (e)

(f) (g) (h) (i)

Fig. 14. Comparison of StructureSense with existing systems along the dimensions of our design space.

We decided on the placements of StructureSense and prior systems along all dimensions (both continuous and
ordinal) based on the demonstrating applications and experiments reported in the prior work. In particular, we
decided on the placement for the qualitative design dimensions by first converting them to ordinal values by
mapping them to a Likert scale (similar to the method by Lambrichts et al [26]). For each dimension, the authors
rated the systems on a 10-point Likert scale ranging from the extreme values as reported on the axes in Fig 14.
For example, for the Compositionality scale, the values ranged from Monolithic (1) to Polylithic (10).
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Our main design goal for StructureSense was to achieve a balance between generalizability and compositionality
by enabling tracking and inference of highly polylithic structures for mundane constructive assemblies. Most
existing assembly tracking systems would either prioritize generalizability or compositionality. For example, in
the second quadrant, tracking systems based on specially fabricated assemblies [10, 18] are highly polylithic (i.e.,
they enable easy tracking of individual objects in a structure), but lack generalizability (Fig. 14a). The downside
of prioritizing compositionality over generalizability with specially fabricated assemblies is the effort of setting
up such systems for a different set of constructive assemblies is infeasible.

On the other hand, in the fourth quadrant, existing tag-based tracking methods [28, 29, 39] have limited ability
to track polylithic structures, but they are highly generalizable to tracking different kinds of objects (e.g., they can
track any building object or a monolithic structure to which one can affix an RFID tag) (Fig. 14a). StructureSense
conducts its structure inference based on tag-based movement detection, thus inheriting the high generalizability
from RapID [39]. Statistically inferring structures from movement history enables our system to track polylithic
structures. Therefore, we placed StructureSense closer to CV-based systems [15, 44] in approximately the first
quadrant, which has a higher balance between generalizability and compositionality than the rest of the systems.

Enabling high creative freedom is important for authoring applications (e.g., [18, 41, 44]), but systems that can
only track pre-defined structures are still valuable for interactive instruction applications (e.g., [24]). Existing
tracking methods based on specially fabricated assemblies and touchless tracking methods tend to handle unspeci-
fied polylithic structures better than existing tag-based methods, which specialize in tracking mundane monolithic
objects and structures (Fig. 14f). Specifically fabricated assemblies such as RFIBricks [18] and CapStone [10] can
have versatile connectors that place few limitations on what kinds of structures they can be combined into.
On the other hand, touchless tracking methods such as [15] are mostly decoupled from the objects they

track and the kinds of structures those objects can form, leading to high creative freedom. We demonstrated
that StructureSense can track the creation of unspecified structures with the authoring application given user
disambiguation. However, we also showed that StructureSense may suffer from a delayed response time and
less satisfactory accuracy as the unspecified structure it tracks gets larger. Therefore, the creative freedom for
StructureSense is higher than the systems that use tag-based methods [29, 39], but lower than the ones with
specially fabricated assemblies and touchless methods.

Unlike touchless tracking methods, both specifically fabricated assemblies and tag-based tracking methods are
highly robust (Fig. 14c & Fig. 14g). Close coupling of objects and tracking system enables high robustness of both
specifically fabricated assemblies and tag-based tracking systems, but at the cost of generalizability (Fig. 14c) and
compositionality (Fig. 14g) respectively. Most touchless tracking methods are highly impacted by environmental
factors—they must have a clear line-of-sight to the structure they are tracking, struggle to track objects that move
too fast, and tend to have higher restrictions on minimum object size relative to other methods. Due to being
based on tag-based methods [29, 39], StructureSense has shown robustness to various environmental factors (e.g.,
occlusion, clutter); thus, making StructureSense one of the more robust assembly tracking systems.
Most existing tracking systems are responsive enough to allow the user to keep their attention on the task,

with RapID [39] approaching the instantaneous time limit of 0.1 seconds [37]. Naturally, the responsiveness of all
systems deteriorates with the increase in the number of objects they need to track. When the responsiveness
drops below 1 second (the limit required for the user to have an uninterrupted flow [37]), the effects of delayed
responses could be mitigated by providing feedback about the system progress (e.g., using a percent-done
indicator [35]). Our system benchmarking and user evaluation showed that our guidance application has a high
response time (which further overlapped with the user’s installation time) leading to a practically seamless user
experience. However, our authoring application showed that StructureSense has a delayed response rate facing
more complicated structures. Due to such a dichotomy, we mapped StructureSense based on its responsiveness in
the guided application (which was similar to that of the evaluation of DuploTrack [15]), with an acknowledgment
that its poor performance in the authoring application would place StructureSense as the slowest response system.
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Most of the existing systems have high accuracy. However, their high accuracy comes at the expense of
either generalizability (Fig. 14e) or compositionality (Fig. 14i). Specially fabricated assemblies are highly accurate
because connections between individual objects are deterministic. The accuracy of touchless tracking systems
could vary drastically and is affected by both the hardware (e.g., the resolution of cameras) and the environmental
factors (see Robustness). Existing tag-based tracking systems have high accuracy, but this is primarily because
they are limited to tracking monolithic structures or pre-specified structures made up of only a few individual
objects. Although StructureSense demonstrated satisfactory accuracy while tracking guided assembly tasks with
a pre-specified goal, we acknowledge that its accuracy has plenty of room for improvement when tracking
unspecified structures.

8 DISCUSSION
We have shown that our StructureSense design and implementation was able to track and infer polylithic structures
made from mundane constructive assemblies. Our evaluation showed that StructureSense offers a robust solution
for tracking mundane constructive assembly instrumented only using adhesive RFID tags. Virtual specification
of properties of constructive assemblies enabled StructureSense to track highly polylithic structures. Thus, our
results show that StructureSense enables increased compositionality of tag-based tracking systems.
Two main contributing factors in enabling the tracking of polylithic structures using a tag-based tracking

system were our virtual specification of constructive assembly properties (information that would otherwise
require specially fabricated assemblies) and our Bayesian-based structures sampling method (which replaced
the need to localize individual objects using CV). However, our approach still requires virtual specifications
for different constructive assembly sets. Some of this effort could be alleviated by creating libraries of common
building object definitions that span multiple constructive sets (e.g. generalizing Jumbo Blocks to LEGO bricks).
We illustrated the generalizability of StructureSense on two arbitrarily different constructive sets (furniture

parts and toy building blocks). StructureSense uses a principled sampling method that is not coupled with any
particular constructive set which aids its generalizability. In our demonstration, we have shown examples of
generalizable proposal functions, prior distribution, and likelihood. Our examples had good performance when
constructing pre-defined structures. However, our naive proposal function and prior distribution resulted in high
uncertainty of possible structures for our example with large structures space. Constructive set providers could
supply specific proposals, prior distribution, and likelihood function implementations corresponding to their
constructive sets, which could decrease the time to sample structures and increase inference accuracy.

We found that StructureSense was able to successfully track pre-specified structures with high responsiveness
and accuracy. However, the performance of the system quickly deteriorated with an increase in structure space
when authoring previously unspecified structures. While the performance of our system still precludes us from
achieving the high creative freedom required for authoring structures in large structures spaces, our system is
well suited for interactive instruction applications. Such guided interactive constructive assemblies instruction
applications can help people to build quickly while avoiding building errors. Our system performance and
usability evaluation of our example guided assembly application has shown that StructureSense is capable of
detecting instances when the user makes an assembly mistake and aiding the user in recovering from the error.

Relying solely on the movement history of individual objects contributed to the generalizability and composi-
tionality of our system. We also showed the feasibility of adding creative freedom to tag-based tracking systems.
However, relying only on movement history when tracking creative assemblies with large structures spaces may
not be sufficient. Obtaining more information even at the expense of responsiveness (e.g., using relative RFID
object localization [42]) could greatly aid the accuracy of our system in large structures spaces. Such information
could reduce the entropy of the posterior probability of possible structures and have a positive impact on the
responsiveness of the system when tracking structures in large structures spaces.
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9 CONCLUSION AND FUTURE WORK
In this work, we presented StructureSense, a tag-based system for tracking and inferring constructive assembly
structures. Our system extends the ability of existing tag-based systems to track mundane constructive assembly
objects to tracking polylithic constructive assembly structures. Our demonstration has shown that StructureSense
could support applications for guided interactive constructive assembly instruction. We have also explored the
applicability of our system to support authoring “design-by-demonstration” applications. Our lab experiments
are the first necessary step to ensure that the system works before any real-world deployment.

Our findings inform several promising directions for future work. For example, future work should explore how
adding additional information about constructive assemblies (e.g., object localization) could make StructureSense
more applicable for authoring structures in large structures spaces. Our findings also call for an investigation of
how a library of commonly used curated constructive sets containing virtual object definitions, proposal functions,
and prior distributions could benefit the responsiveness and accuracy of a tag-based structures tracking system.
Such future advances in tag-based structure tracking systems could enable the coupling of interactivity with
everyday mundane physical objects to enable quick and accurate structure assembly and rapid TUI prototyping.
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