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Abstract 
Sensing touch on arbitrary surfaces has long been a goal of ubiq-
uitous computing, but often requires instrumenting the surface. 
Depth camera-based systems have emerged as a promising solution 
for minimizing instrumentation, but at the cost of high touch-down 
detection error rates, high touch latency, and high minimum hover 
distance, limiting them to basic tasks. We developed HaloTouch, a 
vision-based system which exploits a multipath interference effect 
from an off-the-shelf time-of-flight depth camera to enable fast, ac-
curate touch interactions on general surfaces. HaloTouch achieves 
a 99.2% touch-down detection accuracy across various materials, 
with a motion-to-photon latency of 150 ms. With a brief (20s) user-
specific calibration, HaloTouch supports millimeter-accurate hover 
sensing as well as continuous pressure sensing. We conducted a 
user study with 12 participants, including a typing task demonstrat-
ing text input at 26.3 AWPM. HaloTouch shows promise for more 
robust, dynamic touch interactions without instrumenting surfaces 
or adding hardware to users. 

CCS Concepts 
• Human-centered computing → Interaction techniques. 
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1 Introduction 
As computing becomes increasingly ubiquitous, it is moving be-
yond the confines of small screens and dedicated devices. This 
evolution is paving the way for “on-world” interfaces that leverage 
the physical environment itself for interaction [31, 62]. Traditional 
input methods, such as mice and keyboards, though precise, are 
tied to specific devices and lack the flexibility required for sponta-
neous, ad-hoc use in dynamic settings. Recent advances in natural 
input techniques, like hand gestures [14, 29, 60] and speech recog-
nition [4, 35, 55], have enabled more intuitive and controller-free 
interactions. However, these methods are often limited by a lack 
of haptic feedback [40, 47], reduced precision [11, 46], and user fa-
tigue [6, 28] over extended periods. To overcome these challenges, 
the focus is now on developing robust input sensing techniques that 
can transform everyday surfaces into interactive, touch-sensitive 
interfaces. 

Several techniques have been proposed to enable touch input on 
various surfaces. For instance, Electrick [69] uses electric field to-
mography to achieve remarkably high touch accuracy. Taplight [58] 
reduces touch latency to an unprecedented 50.4ms by analyzing 
structured light patterns. ShadowTouch [39] has a touch point 
threshold of less than 2mm – accurately triggering touch down 
events only when the finger is within 2mm of the surface. Tri-
pad [16] takes a human-centric approach to generalize touch in-
put across a wide range of surface materials. Meanwhile, Micro-
press [15] combines pressure and proximity sensing by integrating 
an IMU (Inertial Measurement Unit) into the fingers. While each of 
these innovative techniques excels in one or two specific metrics, 
none of them can comprehensively address the entire design space 
of touch input (see Figure 1). 

We present HaloTouch, a novel technique enabling compre-
hensive sensing input capabilities with a commercially available 
depth camera. HaloTouch achieves a touch-down accuracy of 
99.2% across 5 different materials, spatial accuracy within 5.5mm, a 
touch point threshold of 4.97mm, and a motion-to-photon latency 
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of 150ms. Furthermore, the pressure and proximity detection capa-
bilities showed high reliability, with mean pressure error of 18.77% 
and mean proximity error of 2.81 mm. 

HaloTouch leverages the underexplored phenomenon of depth 
camera multipath interference, enabling it to work on general day-
to-day surfaces. Multipath interference provides a continuous signal 
around the fingertip area as the finger approaches the surface, 
enabling us to determine the fingertip’s proximity to the surface 
despite sensor noise. We refer to this phenomenon as the Halo 
effect, as it visually appears as a “halo” around the fingertip. This 
technique requires no surface instrumentation or wearable sensors, 
though we do need to perform a short (20s) one-time calibration 
for users on a new material. The unique Halo phenomenon also 
enables touch input in challenging conditions, such as very wet 
surfaces. 

After comparing with other related work, we came up with 
design requirements for HaloTouch. We describe the theory behind 
multipath interference, the Halo effect and our approach to model 
this signal for building a touch detection pipeline. We then report on 
a two part study, the first one capturing the technical evaluations of 
HaloTouch and the second one showing the interaction modalities 
it enables with passive surfaces. 

Finally, we summarize our contributions as follows: 
• Explored and characterized the Halo effect as a way to sur-
pass noise thresholds in commodity depth sensors. 

• Developed a comprehensive multimodal touch input system, 
supporting both pressure and proximity sensing, for use on 
passive physical surfaces using only a depth+RGB camera. 

• Demonstrated the versatility and effectiveness of our system 
for rapid, ad hoc use cases through a user study focused on 
typing, alongside two additional example applications. 

2 Related Work 
Prior approaches, including surface instrumentation, wearables, 
and vision-based methods, offer trade-offs in accuracy, scalability, 
and practicality. While depth-sensing and computer vision provide 
promising alternatives, existing methods often struggle with real-
time performance or deployment complexity. This section reviews 
prior work in ad-hoc touch, pressure, and proximity sensing. 

2.1 Enabling Ad-hoc Touch Input on Passive 
Physical Surfaces 

Researchers have explored various methods for capturing touch 
events on everyday surfaces. One approach is surface instrumenta-
tion with acoustic sensors or electrodes. For example, prior research 
has localized touch events on surfaces with signals from contact 
microphones [26, 34, 51, 65]. Similarly, electrodes can also be added 
to objects or surfaces to make them touch-sensitive [7, 69, 70]. How-
ever, instrumenting surfaces introduces deployment overhead and 
is costly when scaling to additional surfaces. Other research has 
explored instrumenting users with wearables to detect touch sig-
nals. SkinTrack [71] integrates four electrodes into a smartwatch, 
localizing finger touches by measuring phase differences of active 
electrical signals emitted from a separate finger-worn device. Shad-
owTouch [39] adds a light emitter to a user’s wrist and predicts 
subtle touch events by analyzing the shadow of the user’s hand. 

Additionally, prior research has developed small finger-mounted 
IMUs to detect touch actions during interactions. Gu et al. [23] 
used an IMU in a finger ring to achieve low latency touch detection, 
whereas Oh et al. [50] mounted the IMU directly on the fingertip for 
high accuracy touch contact detection. ActualTouch [57] mounted 
a small IMU on the user’s fingertip to detect differences in finger 
microvibrations between touching/dragging and in-air states. 

Camera-based approaches for sensing ad-hoc touch have become 
popular as they do not require instrumenting the surface nor the 
user. Wilson [61] was the first to demonstrate the possibility of 
using a depth camera to detect touches on flat surfaces. Other 
explorations have focused on improving different metrics of touch 
input, such as providing high touch down accuracy [25, 64], low 
spatial error [8, 27, 37], low latency [17, 58], and longer sensing 
range [56]. Among those, DIRECT [64] combined depth and IR 
signal sources to reach more than 99% touch down accuracy at 
the cost of higher latency. TapLight [58] leveraged structured laser 
light reflection disparity to reach a very low latency (50.4 ms) but 
their touch point threshold is as high as 45 mm. 

Deploying ad-hoc touch input systems on headsets provides 
precise, tactile input for augmented and virtual reality applica-
tions [30, 32], complementing existing natural input techniques. 
MRTouch [66] achieved real-time surface plane detection and touch 
input detection using sensors embedded in HoloLens 2. It demon-
strated the potential for fast touch input interactions using IR and 
depth-sensing techniques, although no formal evaluation was con-
ducted to assess how rapid users can give touch inputs to the sys-
tem. Tripad [16] used a more human-centric approach to generalize 
touch input to arbitrary surfaces using only hand tracking from 
HoloLens 2. It successfully performed basic input tasks like clicking 
and dragging, though the touch point threshold remains relatively 
high at 55 mm, making it difficult to rapidly disengage touches for 
fast input. EgoTouch [49] uses Apple Vision Pro’s RGB cameras for 
calibration-free, on-skin touch detection, achieving high accuracy 
in various environments, but it struggled with high-speed input and 
occlusions. TouchInsight [59] employed a probabilistic framework 
to handle egocentric hand tracking uncertainties, enabling precise, 
low-latency interactions like virtual keyboard typing. In contrast, 
HaloTouch combines pressure and proximity sensing with accu-
rate touch input across general surfaces, expanding interaction 
capabilities. 

2.2 Ad hoc Pressure Sensing and Proximity 
Sensing 

Traditional pressure sensing methods involve physical sensors such 
as capacitive grids [2, 12, 24], force-sensitive resistors [5, 53], or 
flexible sensors [3, 36], which must be mounted on surfaces or 
hands. These methods can be impractical and expensive for diverse, 
real-world applications. Vision-based surface pressure sensing is a 
growing field that aims to estimate contact pressure using computer 
vision techniques rather than invasive physical sensors. 

Recent advances in computer vision have allowed for pressure es-
timation using visual cues such as fingertip color changes [9, 43, 44] 
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Figure 1: Radar charts comparing eight touch input systems (Electrick[69], ShadowTouch[39], Shi et al.[57], TapLight[58], 
Direct[64], FarOut[56], MicroPress[15], HaloTouch) across metrics like Accuracy, Latency, Material Compatibility 

and soft tissue deformation [33]. ForceSight [52] showed high pres-
sure sensing potentials using laser speckle pattern differences re-
flected from deformed objects, though it only works with plasti-
cally deformable materials. PressureVision [22] pioneered using 
deep learning to estimate fingertip pressure from RGB images, 
but it was limited by controlled settings with constrained lighting 
and simple surfaces. To address these limitations, the “Pressure-
Vision++” [21] model utilized weak supervision through contact 
labels. This method requires the collection of diverse training data 
without requiring ground-truth pressure measurements from high-
resolution sensors. In comparison, HaloTouch leverages learning 
of the IR and depth multipath interference signal, avoiding the use 
of large training set to estimate a more fine-grained pressure level 
on flat surfaces. 

Pressure sensing and proximity sensing can be achieved at the 
same time to enable new modes of interaction. MicroPress [15] 
used Inertial Measurement Unit (IMU) sensors combined with deep 
learning models to detect both pressure and hover distance be-
tween fingers with high precision. However, this method requires 
additional sensors to be placed on both fingers, potentially lim-
iting its practicality for casual or on-the-go use. Other existing 
approaches focus on finger proximity detection in mobile inter-
actions. Air+Touch [10] employed a horizontally mounted depth 
camera on a smartphone to explore the interaction space for both 
touch and hover gestures. Similarly, OmniSense [67] used a 360-
degree camera feed on a mobile phone to train a neural network that 
predicts the 3D location of fingertips. Another technique proposed 
by Matulic [45] involved two mirrors mounted above the phone 
screen that reflect the front camera view; captured video is sent to a 

deep neural network that robustly infers the 3D position of finger-
tips. Although effective, these methods still require some level of 
instrumentation, either on the touch surfaces or the mobile devices, 
which makes achieving spontaneous, ad hoc proximity sensing 
difficult. HaloTouch uses only a commodity available depth cam-
era, offering the potential to achieve ad hoc proximity sensing and 
pressure sensing for any surfaces anywhere. 

3 Positioning and Goals of HaloTouch 
We identified representative touch sensing technologies with high 
reported accuracy (above 95%) and distilled eight key technical 
dimensions. From these, we selected works that demonstrated the 
best performance in each dimension to ensure a comparison against 
state-of-the-art benchmarks. Finally, we evaluated and mapped 
the overall performance of the selected works across these eight 
dimensions. The dimensions and their scoring criteria are detailed 
below, with additional scoring information provided in Appendix 
Figure 15. 

• Instrumentation: Past touch sensing systems are mainly based 
on 3 types of instrumentation: 1) instrumenting surfaces, 2) 
wearables, and 3) vision-based (i.e., use headsets or Kinect). 
To score them, we consider deployment friction, scalability, 
and interactive freedom. Systems that require instrumenting 
the surface have a lower score because they require the most 
effort to deploy and are hard to scale. We assign technologies 
that instrument users’ hands with wearables a medium score 
as they can be bulky and thus affect interactive freedom. 
Consequently, we consider vision-based technology to have 
lower deployment friction and better interactive freedom. 
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• Touch Down Accuracy: We extract the touch down accuracy 
reported from the corresponding literature in percentages 
and normalize them to 0–10 (0% has a score of 0 and 100% 
has a score of 10). 

• Spatial Accuracy: We extract the spatial accuracy from the 
corresponding literature in mean errors of millimeters, and 
min–max normalize them to 0–10. Some work (e.g., Shadow-
Touch [39], Gu et al. [23], Shi et al. [57], and TapLight [58]) 
only focus on touch down accuracy. Such work can be com-
bined with built-in hand tracking for touch localization; we 
thus assign a typical hand tracking spatial accuracy of 11 mm 
[1] to them for scoring. 

• Latency: We extract the latency from the corresponding lit-
erature in milliseconds, and min–max normalize them to 
0–10. 

• Touch Point Threshold: We define the touch point threshold 
as the minimum distance the fingertip must travel perpen-
dicular to the surface to register a valid input, while avoiding 
false positives. We extract the touch point threshold from 
the corresponding literature in millimeters, and min–max 
normalize them to 0–10. For work that did not report a spe-
cific touch point threshold (i.e., Electrick [69], Gu et al. [23], 
Shi et al. [57]), we estimated it from their technical principle 
and demo video. 

• Material Compatibility: This is an under-explored yet im-
portant dimension. Our score is based on our interpreta-
tion of their technical principle. For example, technologies 
that require conductive material [69] or plain texture of sur-
faces [39] have a lower material compatibility. 

• Pressure: While novel track pads [54] already support pres-
sure sensing for touch, enabling the same on everyday sur-
faces is scarce in literature. 

• Proximity: For our evaluation, we selected a recent high-
performance system [15] as a benchmark and assessed our 
system based on their proximity accuracy metrics. 

We compare past touch-sensing research with their performance 
in common metrics distilled from literature. We select representa-
tive research that falls in the instrumentation categories we have 
reviewed: 1) instruments the surface with sensors, 2) instruments 
the user with wearables, and 3) instrumentation free (besides using 
RGB/Depth sensing equipment). State-of-the-art touch sensing has 
reached 99% accuracy and millimeter-level spatial accuracy while 
having a low latency. However, few (only ShadowTouch [39] to the 
best of our knowledge) have focused on achieving a small touch 
point threshold, enabling subtle touch detection. With HaloTouch, 
we set out to minimize the touch point threshold while achieving 
similar touch-event and spatial accuracy to the state-of-the-art, en-
abling ad hoc, rapid touch interactions on passive physical surfaces. 
As such, we list the technical requirements for our system: 

(1) Avoid instrumenting users or the surface with additional 
hardware, thus supporting better interaction freedom and 4.1 Working Principal 
low-friction deployment. 

(2) Achieve high accuracy in detecting touch-down moments to 
ensure that every intentional touch by the user is correctly 
identified and registered by the system. 

(3) Provide high spatial accuracy in touch detection, allowing 
the system to precisely identify the exact location of each 
touch input. 

(4) Ensure the interaction system responds to touch inputs with 
a low latency to maintain a fluid and responsive user experi-
ence. 

(5) Minimize the touch point threshold to allow for closely 
spaced touch inputs without interference. This feature is 
particularly important in scenarios where rapid or complex 
gestures are performed, such as fast tapping on multiple 
locations on the surface. 

(6) Support operation across diverse surface materials to en-
hance usability in various mobile environments. 

HaloTouch builds upon the under-explored phenomenon of 
multipath interference in depth cameras, first highlighted by FarOut 
[56]. While FarOut utilized this phenomenon along with additional 
engineering techniques to extend touch detection range up to 3 
meters, our work provides a more detailed explanation of the under-
lying principles and a comprehensive characterization of multipath 
interference for touch sensing with depth cameras. Furthermore, 
our system extends the capabilities of touch input beyond mere 
contact detection to include hover and pressure inputs, leverag-
ing multipath interference to enable these additional interaction 
dimensions. 

4 HaloTouch 
In this section, we first explain the relationship between multipath 
interference and the Halo effect, and the verification for our theory. 
Then we detail how we implement our systems to take advantage 
of the Halo effect to achieve touch sensing. 

Figure 2: Multi-path Interference example scene: (a) Top view 
of Multi-path interference when camera faces a corner. (b) 
Side view of multi-path interference when camera faces a 
hand. (c) Top view of multi-path interference when camera 
faces a hand. 

4.1.1 Multipath Interference in Time-of-flight Depth Cam-
era. Modern time-of-flight depth cameras rely on correlation tech-
niques to determine the phase shift, and thereby the distance be-
tween two signals: a modulated infrared signal that illuminates 
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the scene and the signal received by the sensor, which captures 
the reflection from the scene’s geometry [38]. Unlike other depth 
sensing techniques, the time-of-flight depth camera contains an 
active IR light source that emits a cone of IR light and receives the 
reflected IR signal using an sensor array to produce a depth map of 
a 3D scene. 

Due to the diffuse reflection pattern of most objects in our life, 
the same incident light ends up creating multiple light paths while 
hitting objects with complex geometries. This causes several signals 
with different path lengths to converge on the same pixel, inter-
fering with each other. Since the sum of two phase-shifted sine 
waves is itself a phase-shifted sine wave, this interference leads 
the camera to register incorrect depth measurements, potentially 
resulting in significant errors in both depth and amplitude – the 
multipath interference [18]. 

We explain the multipath interference phenomena in Figure 2(a), 
when a time-of-flight depth camera illuminates an IR light (red line) 
into a corner. After the IR signal hits the first contact point (P1), 
it reflects in many directions following a combination of specular 
reflection (not drawn) and diffuse reflection (blue line) [13]. At the 
same time, the other incident lights hit point P3, creating specular 
reflection (green line) and hit point P2, creating diffuse reflection 
(yellow line). Their reflection paths all converge back to the same 
sensor array cell corresponding to P1, resulting in different phase 
shifted signals, and thus different computed distances after each 
signal is correlated with the reference signal. We note that there 
are typically multiple diffuse reflection sources that converge to 
P1 in practice, and they all contribute to the final signal strength 
observed at P1. Therefore, the multipath interference phenomenon 
generates a complex mixed signal influenced by multiple factors. 
Additionally, for smooth surfaces that only create specular reflec-
tions, the multipath interference phenomena will not be observed 
since each contact point (P1) will only receive one unique specular 
reflection coming from the reflection point (P3). 

4.1.2 Multipath Interference in Touch Down Events. Next, 
we explain the multipath interference phenomenon in the context 
of a finger touch-down event, influenced by both local and global 
impacts. First, when a finger approaches the surface closely (within 
3 cm), the finger and the target surface form a mini corner, creating 
local interference (Figure 2(b)). At this corner, multipath interfer-
ence occurs in the same manner as previously described: the red 
line represents the incident light, which results in diffuse reflections 
along the blue line after hitting point P1. The other incident light 
ray (green line) hits point P2 and converges with the blue line path 
to form multipath interference (reflection angle exaggerated in the 
figure). 

In addition to this local impact, we illustrate the global impact 
from a top-down perspective of the same finger touch-down event 
(Figure 2(c)). Beyond the single incident light ray (red line) directed 
at point P1, the infrared light source also emits other rays in a 
cone shape. We consider two rays (green line and yellow line) at 
the widest angles of this cone, which are directed at points P2 
and P3—representing two points on other objects in the scene. 
In this scenario, diffuse reflections are the most common, as the 
objects may not have perfectly angled surfaces to produce specular 
reflections. The reflected rays eventually also reach P1, causing P1 

to receive phase-shifted light originating from other objects in the 
scene. Both local and global influences contribute to the final signal 
strength observed. 

4.1.3 The Halo Effect. The direct impact of multipath interfer-
ence in many cases takes the form of unbiased noise, which is hard 
to eliminate. This means that even if we have a higher resolution 
depth camera, we are limited in our effective depth resolution. Pre-
vious researchers had used different techniques to decouple each 
phase shifted signal to recover the true phase shift; however they 
have been limited by bandwidth and SNR [18]. Instead of model-
ing the formation of this phenomena, we leverage a case of biased 
multipath interference as observed directly in the output signal in 
the depth map, after the interference is processed by the camera 
sensor. 

The Halo effect is influenced by several factors, including the 
material of the reflecting surfaces, the angle between the ground 
surface and the camera, the geometry of the objects, their orienta-
tion relative to the camera, and the distance between them, among 
others. We note that the Halo effect signal is highly sensitive; even 
slight deformations of the fingertip on the surface can cause no-
ticeable variations in the Halo signal, whereas the changes in the 
depth data at the fingertip itself are imperceptible due to noise. Our 
pressure sensing technique leverages this high level of sensitivity. 
To model the Halo effect, we considered the index finger’s six de-
grees of freedom, incorporating the effects of material properties 
and finger deformation when pressure is applied to the finger press. 
We empirically characterized the Halo effect using a single index 
finger interacting with a surface while isolating each of the pa-
rameters mentioned above. Each parameter exhibited a non-linear 
relationship with the Halo effect signal strength, as expected, since 
changes in one parameter often lead to multiple concurrent effects. 
For instance, altering only the finger’s x-position while keeping 
other parameters constant affects both the distance and orientation 
between the finger and the camera. Given this non-linear relation-
ship, we adopt a machine learning approach to predict the Halo 
effect signal strength, as described later in Section 4.3.1. 

The key observation that supports our multipath interference 
hypothesis is that, after extracting the output signal from the depth 
camera, visualizing it on the depth map, and subtracting the back-
ground depth, the resulting values are positive. This indicates that 
the depth camera interprets these points as being further away 
than the surface actually is; in other words, the camera perceives 
a “denting” of the surface. Furthermore, this value increases as 
more interference is introduced into the scene, which aligns with 
our hypothesis that a mixture of longer-path, phase-shifted signals 
causes the camera to interpret the pixel as being further away than 
its actual distance. More technical details are provided in Section 
4.3.1. 

We considered other potential explanations for this phenome-
non, such as signal averaging and over-exposure artifacts. Signal 
averaging happens when objects are very close to a surface, caus-
ing the boundary between them to blur or disappear, but we ruled 
this out because the phenomenon we observed occurs after signal 
averaging in the sequence of events. As the fingertip approaches 
the surface, an additional output pixel signal appears around it 
when it gets within 2 cm, following an initial signal loss at 3 
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cm due to averaging. Over-exposure artifacts, which distort the 
depth map on overexposed infrared images, were also considered. 
However, unlike our observed phenomenon, which only occurs 
when an object is near the surface, over-exposure artifacts affect a 
larger area of the scene regardless of object proximity. 

4.2 Hardware 
HaloTouch is implemented using Microsoft Kinect Azure depth 
camera [48], a Optoma LDMLTUZST LED projector, and a commer-
cial grade laptop with Intel i7 11800H CPU at 2.3 GHz, and NVIDIA 
GeForce RTX 3050 Ti GPU. The depth camera is USB connected to 
the PC and the projector is connected to the PC via HDMI. Each 
hardware component in our setup is replaceable by other similar 
off-the-shelf products. 

Although there are many types of depth camera sensors, our 
approach is exclusive to the time-of-flight sensing modality. Such 
sensors are commonplace, e.g. in the Microsoft Kinect 2, Azure 
Kinect, and Microsoft Hololens series of devices, and the Halo 
effect has been observed in each of these devices. 

4.3 Software 
HaloTouch software is implemented using Python in a Windows 
Anaconda environment. HaloTouch uses the pyk4a python wrap-
per for Azure Kinect SDK to access the depth and RGB streams 
of the camera. We use the unbinned Narrow Field of View mode 
to obtain a 30 FPS, 640 x 576 depth stream and a longer operating 
range (0.5 – 3.86m), with the trade-off of a relatively narrower field 
of view (75 degrees x 65 degrees). The RGB streams also runs at 
30 FPS, and are dynamically warped to match the resolution of the 
depth stream. 

We visualize our system pipeline in Figure 3, and we provide 
more details in each section below. 

4.3.1 Revealing the Halo Effect. Like other static setup systems, 
such as WorldKit [63], we capture 60 frames of background depth 
images to model the static environment. We then subtract incoming 
depth frames from this background model to isolate moving hands 
from static objects in the scene. In contrast, DIRECT [64] employs 
a five-second rolling window of depth data to dynamically update 
the background model, which is particularly useful for accurately 
modeling backgrounds when moving objects are present. However, 
in our case with a largely static background, a simple background 
capture is sufficient to achieve the desired isolation with lower 
complexity. After background subtraction, the moving hand or any 
new object will have non-zero pixel values. 

To visualize the Halo effect, we apply a filter that sets all pixel 
values greater than a threshold value - in our current system, 8 
units - to 255 and all the pixel values smaller than 0 to 127. After 
background subtraction, all objects in the scene show negative 
pixel values since they are closer to the camera compared to the 
background surface. The Halo effect, on the other hand, manifests 
with positive pixel values, indicating that the sensor interprets 
these pixels as being further away from the camera relative to the 
background surface. The filtered image renders hands in color grey 
and Halo effect in color white. 

The Halo threshold value of 8 was empirically determined by 
testing on pilot users and we used this threshold value throughout 

our experiments. We recommend using a threshold value between 
5-10 depending on the camera placement and surface materials 
(Figure 16). A much higher threshold value would diminish the 
captured Halo effect signal strength, while a lower value is more 
susceptible to ambient noise. 

4.3.2 Hand Tracking. Vision-based methods for real-time hand 
tracking have become increasingly mature, though they still face 
challenges in certain situations, such as occlusions and variations in 
lighting conditions. When virtual content is projected onto surfaces, 
interacting with this content can cause color overlays on the hands 
in the captured RGB stream images. Our hand tracking relies on 
Google’s MediaPipe Hand Landmarker [20], a deep learning-based 
algorithm that can fail abruptly due to color discrepancies on the 
user’s hands. While it is possible to train a custom hand-tracking 
model with a dataset featuring overlaid hands, such a model may 
not generalize well to a broader range of colors when the projected 
objects change. To address this, we use a computer vision approach 
that combines infrared (IR) and RGB image streams in a 0.7:0.3 ratio 
for image blending. This blended image enhances the color con-
trast between the hands and the projected virtual content, thereby 
restoring effective hand-tracking functionality. 

4.3.3 Halo Effect Signal Extraction. As we warp the color image to 
be the same position and size as the depth image, we can use hand 
tracking in the color image to find the fingertip in the depth image. 
We extract a 30x20 patch around the detected fingertip to perform 
touch detection. The patch area size is empirically determined to 
capture the full Halo effect signal around the fingertip, although it 
may preclude detecting closely-spaced fingertips (a limitation of 
our implementation). We sum all the non-zero values in this patch 
to form our initial Halo effect signal value and pass this value to 
the signal corrector. 

4.3.4 Signal Correction. In the context of a touch-down event, 
many factors could contribute to the Halo effect signal strength 
in a non-linear manner. Limiting the setup to an empty scene, the 
Halo effect is influenced by the following factors: the distance 
between the fingertip and the camera, the 3D orientation of the 
finger (including roll, pitch, and yaw) relative to the camera, and 
the amount of finger deformation on the surface. To model these 
factors, we define four key parameters: x, y, 𝜃𝑝 and 𝜃𝑦 . Our model 
is based on two key assumptions: (a) users maintain a relatively 
consistent roll angle 𝜃𝑟 while interacting with the surface, and 
(b) the distance between the camera and the interaction surface 
remains constant during touch. The parameters x and y represent 
the fingertip position in the horizontal plane. The pitch angle 𝜃𝑝 
and yaw angle 𝜃 𝑦 are derived from the spatial relationship between 
the fingertip and the fingerdip (distal interphalangeal joint - the 
first joint closest to the fingertip) using hand landmarks. Note that 
the system’s robustness is constrained to the 15 to 75 degrees range. 
Angles below 15 degrees result in a weak Halo effect signal that 
compromises detection reliability, while angles above 75 degrees 
can lead to hand-tracking issues caused by fingertip occlusion from 
the top view. 

To minimize user calibration time and reduce the need for ex-
tensive datasets, we employ a HistGradientBoosting regressor to 
predict the strength of the Halo effect and correct the original Halo 
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Figure 3: Software: a touch detection pipeline using a Kinect Azure depth camera. It integrates IR and RGB streams with hand 
tracking and signal processing to isolate fingertip signals, correct noise, and detect touch events 

effect signal value, taking x, y, 𝜃𝑝 and 𝜃𝑦 as input, and producing a 
scalar value as output. The regressor model is initially trained using 
data collected from three pilot users and is fine-tuned for each new 
user with 20 seconds of calibration data. We use MSE loss, learning 
rate of 0.1, boosting iterations of 200, max leaf nodes of 31, min 
samples leaf of 25, and max bins of 255 for regressor training. Our 
training data consists of 27000 frames divided into a training-to-
validation ratio of 8:2. Three pilot users completed three rounds 
of sweeping at pitch angles of 15°, 30°, 45°, 60°, and 75° across the 
surface, as described in Section 4.3.5, Task Two. Each round lasted 
one minute. During each round, the pilot users were instructed to 
naturally drag their finger across the surface, accompanied by the 
3D-printed blocks, to introduce variations to the yaw angle. 

4.3.5 Calibration. The calibration process consists of two main 
tasks that users must perform to ensure accurate touch detection. 

In the first task, users are required to perform four distinct touch 
states on the surface to calibrate the system for different levels of 
interaction: 

(1) Hover State: The finger hovers at a height where the Halo 
effect just becomes visible. This state captures the initial 
onset of the Halo effect as the finger gets closer to the surface. 

(2) Subtle State: The finger hovers closer to the surface but 
does not make contact. This state represents a finer level of 
proximity where the Halo effect becomes more pronounced 
but still without a physical touch. 

(3) Touch State: The finger lightly touches the surface with a 
relaxed hand posture. This state is the baseline for a standard 
touch interaction, where the finger makes contact with the 
surface without exerting additional pressure. 

(4) Pressure State: The finger presses down on the surface with 
a medium amount of force. This state represents a more 
forceful interaction, which helps in distinguishing between 
a simple touch and a press action. 

In the second task, users quickly sweep their fingers around the 
touch surface. This sweeping motion allows the system to capture 
the Halo effect strength at various locations across the surface. 
To maintain consistency in finger deformation while sweeping, 
a 3D-printed part angled at 45 degrees is provided for users to 
rest their index finger on. We employed a fixed 45-degree angle to 
provide consistency in the collected data. However, in principle, 
any angle from 15 to 75 degrees could be used, as we trained the 
signal correction model itself on this range of finger angles. 

It is important to note that both calibration tasks are only per-
formed using the dominant hand’s index finger. We assume that 
participants have similar hand structures on both sides; therefore, 
the calibrated parameters are applied to both hands. However, if 
significant differences are present, as in the case of a participant 
with substantially longer artificial nails on the dominant hand com-
pared to the non-dominant hand, separate calibration parameters 
are set for each hand. 
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Figure 4: HaloTouch State Machine for Signal Correction, Calibration, and Touch Detection. This diagram outlines the signal 
processing pipeline for HaloTouch, structured into three key sections: Signal Correction (Sec 4.3.4), Calibration (Sec 4.3.5), and 
Touch Detection (Sec 4.3.6). The state machine transitions between Idle, Hover, Subtle, Touch, and Pressure states based on 
corrected halo signal values. The Touch Detection module predicts proximity, touch-down, and pressure values 

Figure 5: Four calibration states. First row: typical finger 
to surface distances for each state. Second row: halo effect 
visualization for each state. 

4.3.6 Touch Detection. The touch detector identifies touch, prox-
imity, and pressure using the calibrated values from the four calibra-
tion states and follows the same interpolation approach described 
in Equation 1, where 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 represent the calibrated state 
values, and 𝑦𝑚𝑎𝑥 and 𝑦𝑚𝑖𝑛 represent the ground truth maximum 
and minimum for the corresponding measurement. 

𝑥 − 𝑥
𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 = 𝑦𝑚𝑖𝑛 + 𝑚𝑖𝑛 (𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛 ) (1) 

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛 

To detect touch events, the detector interpolates the input Halo 
effect value x between the subtle state (𝑥𝑚𝑖𝑛 ) and the touch state 
(𝑥𝑚𝑎𝑥 ) values to generate an interpolated value. This value is ana-
lyzed using a heuristic-based classifier that relies on thresholding 
and derivative analysis. The classifier calculates the absolute dif-
ference between the current interpolated value and an adaptive 
baseline. If this difference exceeds a predefined threshold, it pro-
ceeds to compute the derivative using the difference between the 
current and previous interpolated values. A non-negative and rela-
tively large magnitude derivative value confirms a potential touch 
event by identifying an increasing trend, which is the characteristic 
of a touch down rather than touch up interaction. The baseline is 
adaptively updated using exponential smoothing to accommodate 
signal drift and reduce noise. This approach enables accurate touch 
detection by leveraging sharp deviations and directional changes 
to minimize noise and false positives. While the derivative analysis 
requires two consecutive frames to compute changes accurately, 
the resulting one-frame delay is a small trade-off for the significant 
improvement in detection accuracy and reliability. 

For typing, a logical state machine debounces touch events, only 
classifying each touch down and up sequence as a single key input. 
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It verifies valid sequences by requiring touch detection to end with 
another no-touch detection, reducing false positives during rapid 
interactions. Although it adds another frame of delay, this approach 
ensures robust detection, avoiding issues with dropped frames and 
systematic delays. 

The system predicts hover distance by interpolating between 
the hover and subtle state values using Equation 1. Distances just 
beyond the hover state (10–15 mm) are predicted by interpolating 
how many pixels still remain on the line between the fingertip 
and the fingerdip. Similarly, pressure is predicted by interpolating 
between touch and pressure state values, enabling differentiation 
between light and firm touch interactions. 

4.4 Camera Placement Impact on Signal 
Strength 

Camera placement affects the strength of the Halo effect signal 
because changes in yaw angle, pitch angle, and vertical (z) distance 
alter the intensity and angle of the IR illumination on the sur-
face. We exclude roll angle from consideration because the camera 
emits a symmetrically distributed IR cone, making roll variations 
insignificant for signal strength. Figure 6 illustrates how yaw angle 
influences the Halo effect signal strength based on three trials col-
lected at each incremental camera position with the finger placed 
at the center of the frame. The impact of pitch angle and vertical 
(z) distance is presented in Appendix B. 

It is important to note that system performance depends on 
the relative differences between calibration states rather than on 
absolute signal strength. Additional discussion of signal strength 
and its implications for sensing flexibility can be found in Section 
7.4. 

Figure 6: Impact of Camera Yaw Angle on Signal Strength: 
(a) The Halo signal strength exhibits a similar pattern across 
all four calibration states when the camera yaw angle ranges 
from 0 to 50 degrees. (b) Sensing region signal strength: Each 
sensing region height was calculated and normalized to its 0 
degree value 

4.5 Working under Extreme Conditions 
The Halo effect also provides reliable signals in challenging condi-
tions, such as on watery surfaces. Near-infrared (NIR) light, used by 
IR depth cameras, typically ranges from 850 nm to 940 nm and can 
penetrate water to a depth of a few millimeters to centimeters. This 
limited penetration depth is sufficient because typical water blobs 
on a surface usually have a height of just a few millimeters. We 

tested our typing application with our pilot users under various wa-
ter conditions, ranging from multiple small droplets to a thin puddle 
on the touch surface. No significant performance differences were 
observed across these conditions, indicating the potential usage of 
HaloTouch under wet surface scenarios. 

5 Evaluation 

5.1 Participants and Setup 
We recruited 13 participants (6 male and 7 female) from the local 
university after obtaining approval from our institution’s ethics 
review board (ID: H19-02782-A010). The data from one participant 
was excluded from the analysis due to non-compliance with the 
study protocol during the typing task, and we report findings based 
on the remaining 12 valid participants. The 12 participants have 
an average age of 25.2 (SD=5.1) with skin types ranging from II to 
VI on the Fitzpatrick scale [19]. 9 of the 12 people were dominant 
in their right hand. All reported they use mobile devices to type 
regularly. 11 out of 12 people reported that they had used AR/VR 
devices like Vision Pro, HoloLens, or Quest in the past. 

As shown in Figure 7, we mounted our Kinect Azure depth 
camera 0.5 m above the table using extension arms. The projector 
is mounted right next to the Kinect Azure depth camera to provide 
projections on the table. An additional side camera is positioned 
at table height to capture ground truth data for all touch events 
from a side view. We manually defined a line in the side camera’s 
field of view to align with the surface level, and used Mediapipe’s 
hand tracking to identify fingertip positions. A ground-truth touch 
event is detected when the fingertip collides with this defined line, 
enabling robust touch detection and hover distance detection with 
accuracy of up to 1.2 mm. 

The ground truth data accuracy accounts for hand-tracking jit-
ter. The camera’s precision is 0.54 mm per pixel, determined by 
measuring line lengths in the camera view. Jitter analysis, based on 
the standard deviation of mean positions over 5 seconds, showed 
an average of 1.26 pixels, corresponding to a 0.68 mm impact on 
ground truth accuracy. 

Throughout the experiment, participants were instructed to ex-
tend their index finger while keeping others near the palm, but 
could adjust clenching, wrist position, and finger posture. Extend-
ing multiple fingers, such as the middle or thumb, affected the 
Halo effect due to interference. While it is possible to model the 
dynamic interactions between multiple fingers, this study focuses 
on single-finger interactions for simplicity. 

5.2 User Study Protocol 
5.2.1 Task One: Target Pointing. Sixteen target points were ar-
ranged in a 4×4 grid, evenly spaced within a 20×20 cm square area. 
One point would appear at a time within this area, and participants 
were instructed to touch it with a 1 second pause between each 
point. If a touch was registered within a 2.5 cm radius of the target 
point, the point would be recorded, disappear, and the next point 
would appear. If no touch was detected, or if the touch occurred 
outside the 2.5 cm radius, the current point would remain visible. In 
such cases, participants were asked to retry touching the point with 
a different finger angle or force. Each participant completed two 
sets of regular touches (with touch durations between 0.3s and 0.6s) 
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Figure 7: Study Scene Setup: (a) Full setup overview (b) Side-
camera aligned with the interaction surface height (c) depth 
camera RGB view (d) side-camera view 

and two sets of swift touches (with touch durations between 0.1s 
and 0.3s) across five different materials (paper, wood, leather sleeve 
(suede), plastic, and foam). The points were presented in a random 
order. Prior to the main test round, participants practiced one set 
of regular touches and one set of swift touches to get familiar with 
the protocol, which we do not include in our analysis. 

5.2.2 Task Two: Proximity and Pressure Sensing. We 3D printed 
small cylinders of varying heights: 5 mm, 7 mm, 10 mm, 12 mm, 
and 15 mm. Participants were provided with one cylinder at a time 
and instructed to place it under their index finger in a relaxed 
posture. The hover distance was then recorded from the system. 
Each participant performed 5 heights × 2 repetitions: 10 trials in 
total. 

An iPhone 6 was used in the setup to provide ground truth (0 to 
385 g) for pressure force measurements using its 3D touch feature. 
As infrared light is directly reflected off phone screens, preventing 
any multipath interference, a layer of regular paper was taped over 
half of the iPhone 6 screen to enable valid readings by our system. 
The other half of the screen displayed a normalized force reading 
(0 to 1). Participants were asked to touch the paper-covered half of 
the screen and adjust their force to five different levels (0.1, 0.25, 
0.5, 0.75, 1) according to the display on the iPhone 6. The output 
value from our system was recorded for each level. Each participant 
performed 5 pressure levels × 2 repetitions = 10 trials. 

5.2.3 Task Three: Virtual Keyboard Typing. A virtual keyboard is 
presented on the touch surface for the participants (Figure 13(a)). We 
used a standard QWERTY keyboard layout, and a standard square 
key size of 16 mm for our virtual keyboard but with only letters. On 
top of the keyboard, participants have a reference sentence that they 
were asked to follow for typing, with their actual input sentence 
displayed below. The reference sentences were randomly sampled 
from the widely used Mackenzie phrase set, which contains 500 
phrases [42]. Participants can also view their current sentence level 

accuracy and words per minute (WPM), so that they can adhere 
to the different typing goals. We played typing sound feedback at 
each click for better training and experience, per [41]. 

We ran a 10-minute warm up session for each participant after a 
brief introduction of the keyboard elements. In each test round, we 
asked the participants to type on the virtual keyboard across three 
tasks, described as follows: 

• T1 - Prioritize accuracy: type with more caution to make 
sure you achieve high accuracy 

• T2 - Balance accuracy and speed: type fast like you would 
on your mobile device, but try to maintain an accuracy of 
90%. 

• T3 - Prioritize speed: read the reference sentence first, plan 
out the finger placement trajectory and then type as fast as 
possible. 

For each task we asked the participants to type 8 sentences, and 
we recorded the average typing accuracy and WPM at the end of 
each task. We ran N=2 repeats for each task. We note while running 
the test round, we asked the participants not to use the “delete” key 
unless it is a mistake that is due to their own behavior. This protocol 
yields data that avoids user bias towards higher typing accuracy, 
better reflecting the user true typing input statistics towards the 
system. 

For comparison, we ran one round of the same 8 sentences 
typed on an Apple iPad Pro (11 inches 2rd Gen) and on a Microsoft 
HoloLens 2 for each participant. The keyboard (Figure 13(b)) follows 
exactly the same layout and size implemented as a web application. 
On HoloLens, the keyboard is implemented using crossing buttons, 
similar to the default HoloLens 2 keyboard. 

5.3 Results 

Figure 8: Precision, Recall, and F1 Score for touch detection 
across five materials: paper, wood, leather sleeve (suede), 
plastic, and foam in our study. 

5.3.1 Touch Down Accuracy. Across 12 participants, we obtained 
3840 test touch points. Of these, 13 reported no touch contact 
(0.34%), 45 reported more than one touch point (1.17%). We re-
port an average precision of 98.8%, recall of 99.7% and F1 score 
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of 99.2% among all the data points. We show the precision, recall, 
and F1 score for each material in Figure 8. We see no significant 
difference (p>0.01, ANOVA with Tukey HSD) on the false negative 
touch counts among material pairs. However, we see significant 
difference (p<0.01, ANOVA with Tukey HSD) on the false posi-
tive counts between suede and plastic, and significant difference 
among other material pairs. We see no significant difference (p>0.1, 
ANOVA) on precision between regular touches and swift touches. 
Outside of the 3840 points, our system detected 31 points which 
are outside of the reference point radius. 

Figure 9: Scatter-plot of all touch points in task one, plotted 
with 95% confidence ellipses. 

5.3.2 Spatial Accuracy. We followed the same analysis procedure 
as MRTouch [64]. We experienced a similar systematic offset of 
all received touch points, which is 7 mm to the left. The shift is 
constant across all materials and users. We subtracted the global 
average offset from all touch points for the following analysis. We 
also removed 61 outlier points (1.6%) which lay more than three 
standard deviations from the reference point. These outliers primar-
ily resulted from user errors and inaccuracies. For instance, some 
users sped up the point-clicking process after becoming familiar 
with the task, occasionally failing to lift their fingers fully before 
clicking the next point. This behavior introduced inconsistencies, 
which were removed to maintain the integrity and accuracy of the 
dataset. Across all materials and all participants, we report a global 
mean Euclidean error of 5.5 mm (SD = 0.69). 

We see no significant difference between the regular touch and 
the swift touch conditions (p>0.01, ANOVA). Pair-wise Tukey HSD 
also shows no significant difference (p>0.01) among the 5 materials. 
We plot the 95% confidence ellipses for all the received points in 
Figure 9. On average, a 16 mm diameter button would capture 95% 
of touches, which provides additional support for the size selection 
in our virtual keyboard implementation. 

5.3.3 Latency. Our pipeline has an overall mean motion-to-graphics 
latency of 150 ms, measured using an external high FPS camera. 

This matches well with the theoretical latency of 146 ms to 186 ms, 
composed primarily of camera buffer image loading (33 ms), me-
dia pipeline hand tracking (5585 ms), the rest of the processing 
pipeline(2535 ms), and projector delay (33 ms). 

5.3.4 Touch Point Threshold. We measure our touch point thresh-
old by averaging all the vertical travel distance of detected fingertips 
from side camera for each valid key input. We make the assumption 
that for each key input, the distance of finger traveling down to 
touch the key and traveling up before aiming for the next key is the 
same. Our system has a touch point threshold of 4.97 mm, averaging 
across all participants in the typing application. 

Figure 10: Participants pressure MAE and hover distance 
MAE breakdown 

5.3.5 Proximity Accuracy. We show the overall results per partic-
ipant in Figure 10. We report an average hover distance error of 
2.81 ± 0.99 mm. Kruskal-Wallis tests indicated no significant differ-
ences between the distance targets (H = 5.42, df = 5, p > 0.001), but 
indicated significant differences between participants (H = 34.28, 
df = 12, p <0.001). 

5.3.6 Pressure Accuracy. We show the overall results per partici-
pant in Figure 10. We report an average pressure error of 18.77 ± 
11.11%. A Kruskal-Wallis test indicated no significant differences 
between the pressure targets (H = 8.69, df = 5, p > 0.001), and also 
indicated no significant differences between participants (H = 28.61, 
df = 12, p >0.001). 

5.3.7 Typing Performance. To evaluate typing performance, we 
measured both text entry speed and accuracy. Text entry rate (in 
WPM) was calculated by taking the time difference between the first 
and last keystrokes for each phrase. For sentence-level accuracy, 
we split each input sentence into words and compared them to 
their corresponding reference words at the character level, then 
reported the average accuracy per participant. We show the task-
wise typing accuracy and speed comparison along with the AR and 
mobile device typing performance in Figure 11. 

To present a more intuitive measure combining typing speed 
and accuracy, we calculated Adjusted Words Per Minute (AWPM), 
where AWPM = WPM × accuracy rate. Unlike raw WPM, which 
only considers the number of words typed in a minute, AWPM con-
siders the error rate as well, providing a more accurate reflection of 
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Figure 11: Typing accuracy and speed (WPM) under five con-
ditions: T1, T2, T3, Mobile, and AR 

Figure 12: Typing speeds (AWPM) for 12 participants across 
five conditions. The color gradient visualizes performance 
differences, with Mobile generally yielding higher speeds 
and AR having the lowest 

typing proficiency. We show the AWPM for each user in Figure 12. 
Additional metrics for text entry including Uncorrected Error Rate 
(UER) and Corrected Error Rate (CER) (using definition by [68]) can 
be found in Appendix C. Using the ground truth data provided from 
the side camera, we calculated the fingertip-to-surface hover dis-
tance when no touch is detected during each typing round for each 
participant, and produced average participant hover distances for 
each typing task (T1, T2, T3). We perform Pearson correlation test 
between AWPM and average hover distance among all participants 
and found a strong positive correlation (Pearson correlation coeffi-
cient = 0.715, p-value < 0.01) for T3, a strong positive correlation 
for T2 (Pearson correlation coefficient = 0.698, p-value < 0.05), and 
an insignificantly negative correlation for T1 (Pearson correlation 
coefficient = -0.197, p-value > 0.05). 

Figure 13: Typing Application: (a) Virtual keyboard in Halo-
Touch projected on wood surface (b) Mobile keyboard with 
same layout in IPad 

6 Example Applications 
6.1 Gesture Augmented Virtual Drumming 
The HaloTouch system’s proximity detection capability allows it to 
accurately sense the hover distance of the user’s fingertip above a 
surface. This feature is utilized in our virtual drumming app, where 
users can engage in an expressive drumming experience that goes 
beyond simple tapping. The app leverages both hands of the user 
to create a dynamic and rich interactive musical environment. 

With one hand, users can play the virtual drum by tapping on 
any surface, producing realistic drum sounds. Meanwhile, the other 
hand can be used to hover at various heights above the surface. The 
distance of this hovering hand from the surface is continuously 
detected by HaloTouch, allowing it to modulate the characteristics 
of the drum sound in real time. For instance, hovering the hand 
closer to the surface can enhance the lower frequencies of the drum 
sound, creating a deeper, bass-like tone, while hovering higher 
could emphasize higher frequencies, generating sharper, snappier 
sounds. This modulation effectively alters the harmonic content of 
the drum sound, creating a wide range of expressive possibilities. 

6.2 Pressure Sensitive Painting 
The HaloTouch system’s pressure detection capability enables it to 
sense the amount of force a user applies on a surface. This feature 
is utilized in our painting application to provide a more natural 
and dynamic drawing experience by allowing users to modulate 
the thickness and style of brush strokes based on varying pressure 
levels, akin to using traditional art tools like brushes, pens, or 
calligraphy brushes. 

In this application, the amount of pressure detected by Halo-
Touch is seamlessly mapped to stroke attributes such as width, 
opacity, and texture. Light pressure results in fine, delicate lines 
suitable for detailing and sketching, while heavier pressure creates 
broader, more pronounced strokes ideal for bold expressions or 
filling large areas. This enables users to achieve natural calligra-
phy effects and provides more freedom and flexibility compared to 
traditional fixed-stroke painting tools. 

The app enhances the painting experience by allowing for smooth 
transitions between different stroke types within a single brush, 
enabling artists to create varied textures and effects without having 
to switch tools frequently. For example, an artist can start with 
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a light stroke to outline a shape and then gradually increase the 
pressure to add depth, shading, or emphasis—all within the same 
continuous motion. This mimics the fluidity of traditional paint-
ing techniques, where artists control their brush or pen strokes by 
applying varying amounts of pressure. 

Figure 14: Results from the 5-point Likert scale questions 

7 Discussion and Future Work 

7.1 Technical Metrics In Comparison with 
Other Systems 

HaloTouch is a comprehensive sensing system that enhances touch 
interaction on general surfaces by achieving high touch-down accu-
racy, spatial accuracy, touch point threshold and no instrumentation. 
In this section, we discuss the key advantages of HaloTouch com-
pared to existing systems, focusing on its touch point threshold, 
versatility, and ability to support diverse input interactions. 

Firstly, HaloTouch achieves high touch-down accuracy (>99.0%), 
comparable to systems like Electrick[69], ShadowTouch[39], and 
Direct[64], and provides high spatial accuracy (<10 mm), similar 
to Electrick[69], Direct[64], and FarOut[56]. While HaloTouch 
operates with slightly higher latency than some other systems, our 
typing application demonstrates that a latency of 150 ms does not 
noticeably impact user experience or performance. 

To further enable rapid and accurate touch input, minimizing the 
touch point threshold is critical. HaloTouch achieves a remarkably 
low touch point threshold of 4.97 mm, outperforming other vision-
based approaches such as TapLight[58], Direct[64], FarOut[56], and 
Tripad[16]. We explain the causes of false positives and false nega-
tives in virtual keyboard typing by discussing the concept of the 
touch point threshold. Imagine that touching a virtual key is like 
pressing a physical button with a certain “height” that must be fully 
pressed down to register a valid touch. The touch point thresh-
olds defines this virtual height. A higher touch point thresholds 
requires more effort from users to transition from one button to 
another. In a virtual keyboard, however, without the tactile feed-
back of physical keys, users often cross into adjacent keys without 
resetting to the required touch point thresholds. This misalignment 
is a major cause of false positives or false negatives, depending 
on the specific threshold settings. Capacitive touch screens, for 
instance, effectively have a zero touch point thresholds, allowing 
users to transition smoothly between keys without restrictions. 
The positive correlation between touch point thresholds and typing 
performance in T2 and T3 also indicates that users who are used 
to lift fingers up higher while typing are able to accommodate for 
systems with a higher touch point threshold. Although systems like 
DIRECT [64], TapLight [58], and Tripad [16] excel in touch-down 

and spatial accuracy, their high touch point thresholds can lead 
to a high false positive rate during fast interactions. In contrast, 
while maintaining high touch-down accuracy and spatial accuracy, 
HaloTouch’s low touch point thresholds significantly enhances 
input speed and accuracy, particularly in rapid typing scenarios. 

Another key advantage of HaloTouch is its ability to operate on 
most general materials without requiring surface instrumentation 
or additional sensors attached to the user. These features are vital for 
achieving true ad hoc sensing without limiting the user’s freedom. 
In contrast, other systems with high material compatibility and 
low instrumentation requirements often compromise on spatial 
accuracy (e.g., Shi et al. [57]) or have a higher touch point threshold 
(e.g., Tripad [16]), making rapid and accurate touch interactions 
difficult to support. 

Moreover, HaloTouch’s capability to detect pressure and prox-
imity enables a richer input interaction space. This includes in-air 
gestures, pressure-modulated inputs as demonstrated in our exam-
ple applications, and the combination of hover, touch, and pres-
sure—all using only a commercially available depth camera. With 
these capabilities, HaloTouch extends the interaction modalities 
on general surfaces, offering a versatile and user-friendly solution 
for touch-based applications. 

7.2 Learning Effect & User Experience 
We observed a strong learning effect in the keyboard typing study, 
which can be explained by two main causes. First, most users are 
accustomed to typing with their thumbs on mobile devices. While 
some users reported using their index finger for typing on larger 
devices like iPads, they do so less frequently. Given that typing 
performance in T3 for the Halo keyboard was nearly on par with 
that on mobile devices, it suggests that users can adapt to typing 
with their index finger after some training and practice. Second, 
typing on flat surfaces lacks the haptic feedback that users rely on. 
Although we provided sound feedback when a key was clicked, 
some participants reported difficulty in knowing whether they had 
successfully touched a key during the warmup round. For instance, 
P7 mentioned, “I got really tired in the learning round where I 
had to constantly make sure if I made contact with the key or not.” 
Similarly, P9 suggested, “I would enjoy the typing experience even 
more if the keyboard gives me a vibration.” 

Users also faced challenges in estimating how far they needed to 
reach out in the air to make a key click in HoloLens. P5 described the 
experience as, “It is hard to click on the key in AR because I cannot 
feel where the key is relative to my hand.” Conversely, P2 expressed 
a preference for AR, stating, “I really like how I can see my finger 
cursor is highlighted in AR, and that helps me know when I am 
clicking a key.” P12 had mixed feelings: “The AR keyboard requires 
me to move my whole arm to type, while the Halo keyboard is 
easier to click on, but the mis-clicks slow down my typing speed.” 
Notably, 10 out of 12 users (P1, P3-P11) felt that the Halo keyboard 
made it easier to make key contact compared to the AR device 
(Q1A). 

We noticed that users who were more confident tended to type 
faster, while those who were more cautious typed slower. Specifi-
cally, users who experienced more false positives during the warmup 
round tended to type more cautiously and slowly in the experiment 
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round. In contrast, users who typed comfortably in the warmup 
round often ended up typing even faster in the experiment round. 
Our implementation of filtering out artifacts based on finger move-
ment speed favors users who type more quickly. 

7.3 Privacy & Trust 
Almost all users (11 out of 12) preferred typing with the Halo key-
board over the AR keyboard (Q2A). However, 75% of them still 
favored using their mobile phones, even if the Halo keyboard were 
available on any general surface in daily life (Q5A). P9 highlighted 
a critical issue regarding privacy: “Halo keyboard types quite nicely 
for me, and it would be really cool to have this kind of keyboard 
everywhere, but I still like my phone better because I don’t want 
others to see what I am doing.” This sentiment underscores the on-
going trade-off between privacy and convenience. While we believe 
that HaloTouch could offer significant convenience if integrated 
into everyday life, preserving user privacy remains essential. A po-
tential future work to address this concern could involve deploying 
HaloTouch onto AR headsets. While our system currently works 
on Kinect Azure, we have confirmed the presence of the Halo effect 
at varying surfaces and heights (up to 1 m) using HoloLens 2 IR cam-
era feed, validating our working theory. The primary challenge for 
deployment would involve optimizing for a moving IR light source 
coupled with a moving plane, ensuring consistent and reliable Halo 
effect signal strength while maintaining user privacy. 

We attribute the lack of correlation between T1 and AWPM to 
participants’ behavior during experiments. In T1, the emphasis 
on accuracy may have led participants to prioritize precision over 
trust-building, suppressing natural typing habits. In T2 and T3, 
relaxed accuracy requirements likely encouraged more natural 
typing, improving performance as discussed in Section 7.1. 

Beyond technical feasibility, P8 raised another point: “I prefer 
my phone because I am more comfortable interacting with my own 
belongings.” This touches on the broader issue of trust between 
humans and computers, which remains an open research area. Al-
though this paper focuses on enabling new interaction techniques, 
future research could explore creating an environment where users 
feel comfortable interacting with any passive surface, much like 
they do with their personal devices today. This raises new research 
questions: Can people develop trust in an object they already own 
if it is augmented with input techniques? Can the HaloTouch 
technique encourage people to trust their environment more over 
time? 

7.4 Sensing Range and Calibration 
Our study setup features a sensing distance of 0.5 meters and no yaw 
or pitch angle on the camera. With our current setup, we support 
an interaction area of up to 30 cm × 20 cm with index fingertips at a 
camera distance of 0.5 meters. Our characterization results in Figure 
6, 17, and 18 show that the performance of the touch measurement 
and pressure measurement is not heavily impacted by distance and 
angle, whereas the resolution of the proximity can be impaired by 
the distance and the angle of the camera placement. Particularly, 
the Halo effect strength for proximity falls below 50% at distance 
of 80 cm, yaw angle of 25 degrees, and pitch angle of 15 degrees. 
the Halo effect strength for touch input is maintained above 75% 

up to distance of 100 cm, yaw angle of 50 degrees, and pitch angle 
of 45 degrees. The Halo effect strength for pressure is maintained 
above 75% for up to distance of 70 cm, yaw angle of 35 degrees, and 
pitch angle of 45 degrees. The Halo effect strength for pressure is 
amplified between pitch angle -35 degrees to 0 degrees. 

The extent to which the Halo effect becomes too weak to support 
reliable touch detection also depends on factors such as the proper-
ties of the surface material. For example, our study found that foam 
board generates significantly less Halo effect compared to other 
materials, while the leather sleeve produces a much stronger Halo 
effect. 

Despite the comprehensive sensing capabilities that HaloTouch 
offers, a 20-second calibration is required for each user to accurately 
capture the finger response across different positions in the inter-
action area. We additionally characterized the Halo effect given 
various camera positions. Such characterization can provide extra 
data to train a more robust algorithm that is free of calibration in 
the future. 

8 Conclusion 
We introduced HaloTouch, a novel input sensing technique that 
leverages multipath interference from commercially available depth 
cameras to enable high-accuracy touch input on a variety of passive 
surfaces without the need for additional hardware or surface instru-
mentation. HaloTouch excels in its ability to provide comprehen-
sive sensing capabilities, combining both pressure and proximity 
detection with impressive accuracy across multiple surface types. 
Our exploration of the Halo Effect has demonstrated the potential 
of this underutilized phenomenon for surpassing noise thresholds 
in depth sensors, making it a robust solution for real-world applica-
tions. The two-part study validated the technical performance and 
versatility of HaloTouch in supporting rapid, ad hoc interactions 
in diverse environments, including extreme settings like watery 
surfaces. 

Our work contributes to the growing field of on-world interfaces 
by providing a flexible, multimodal touch input system that broad-
ens the potential for interaction in uninstrumented environments. 
Moving forward, HaloTouch paves the way for future research 
in expanding the capabilities of depth cameras and enhancing the 
seamless integration of digital interactions with the physical world. 
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A Appendix A: Design Space Scoring Table 

Figure 15: Comparison of Touch Input Systems Across Key 
Metrics. This table compares various touch input systems 
based on key performance metrics, including touch-down 
accuracy, spatial accuracy, latency, touch point threshold, 
material compatibility, pressure sensing, and proximity sens-
ing. 

B Appendix B: Halo Effect Signal Strength 

Figure 16: Effect of Threshold Variation on Halo Signal 
Strength. This figure illustrates the impact of different 
threshold values (T=4 to T=10) on the detection of the halo 
effect around a fingertip in depth camera imagery. 

Figure 17: Halo Signal Strength Variation Across Z-Distance. 
These plots illustrate the relationship between Z-distance 
(distance from the sensor) and normalized halo signal 
strength for different interaction states (hover, touch, and 
pressure). The left plot shows signal strength degradation 
with increasing Z-distance, with shaded regions indicating 
different sensing zones. The right plot highlights how signal 
strength transitions across the halo sensing regions. 

Figure 18: Halo Signal Strength Variation Across Pitch Angles. 
These plots illustrate the relationship between pitch angle 
and normalized halo signal strength for different interaction 
states (hover, touch, and pressure). The left plot shows how 
signal strength changes with pitch angle, where the shaded 
regions indicate hover, touch, and pressure sensing zones. 
The right plot focuses on the transition of signal strength 
across these sensing regions. 

C Appendix C: Typing UER and CER 

Figure 19: User Error Rate (UER) and Character Error Rate 
(CER) across different input methods. This bar chart com-
pares UER (%) and CER (%) across five input conditions: T1, 
T2, T3, Mobile, and AR. Darker bars represent UER, while 
lighter bars represent CER, with values displayed inside each 
bar. 
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