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Figure 1: GaussianNexus - a collaborative mixed-reality system: A HoloLens AR user and a Quest VR user share a spatial
workspace through Gaussian splatting-based 3D scene rendering and real-time object synchronization. The system supports:
(1) view-dependent 3D scene exploration, (2) a virtual avatar with live head and hand tracking, (3) interactive movable objects
that update the Gaussian Splatting scene in near real time, and (4) embedded 2D live recti!ed video for physical surfaces.

Abstract
Telepresence systems with AR/VR immerse a remote user in a local
physical environment, enabling virtual travel, remote guidance,
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and collaborative design. Contemporary systems typically rely on
360° video or RGB-D reconstruction – each with trade-o"s between
visual !delity and spatial perception. Emerging rendering tech-
niques like Gaussian Splatting unify these strengths, o"ering photo-
realistic scene representations with spatial interactivity. However,
due to the long training times required, updating such scenes in
real-time is still largely infeasible. We present GaussianNexus, a sys-
tem that applies Gaussian Splatting to room-scale telepresence. Our
system uses Gaussian Splatting as the primary scene representation
medium, and a 360° camera to stream and track 2D and 3D dynamic
changes. For live 2D interaction, the system overlays recti!ed video
onto user-selected surfaces. For live 3D interaction, users identify
dynamic objects in the environment, which are then segmented,
tracked and synchronized as real-time updates to the Gaussian
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Splatting environment, enabling smooth, low-latency telepresence
without retraining. We demonstrate the utility of GaussianNexus
through example applications and evaluate it in a usability test.

CCS Concepts
• Human-centered computing→ Collaborative interaction;
Mixed / augmented reality.
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1 Introduction
Telepresence systems with AR/VR bring people together in a shared
physical space, enabling natural collaboration and immersive pres-
ence. Typically in such systems, a “local user” wears an AR headset
and is physically present in their real-world environment, while
a “remote user” virtually joins them through VR. These systems
hold great potential for realistic shared experiences such as virtual
travel [8, 9, 34], remote instruction [17, 21, 70, 76], and collaborative
design [25, 51].

However, contemporary telepresence systems still fall short of
delivering fully immersive and realistic experiences. Common scene
representation approaches—such as RGB-D reconstruction and 360°
video—struggle to achieve spatial interactivity and visual !delity
simultaneously [25, 67]. While 360° video o"ers high-resolution
visuals, it lacks depth perception and restricts user interaction due
to the inability to navigate the scene [23, 25, 57]. In contrast, RGB-D
reconstruction enables spatial interaction and free scene navigation,
but at the cost of lower visual quality [52, 53, 70].

Emerging neural rendering techniques, such as Neural Radi-
ance Fields (NeRF) [6, 50] and Gaussian Splatting [10, 36], o"er
photo-realistic scene representations while allowing spatial interac-
tivity and free-viewpoint navigation—combining the strengths of
360° video and RGB-D reconstruction. However, these techniques
are primarily designed for static scenes and struggle to support dy-
namic updates in real time, making their application to telepresence
challenging.

Recently, SharedNeRF [59] has attempted to bridge this gap by
using optical #ow to detect scene changes and retraining Instant-
NGP [50] on the #y. While e"ective in small-scale settings, it relies
on users’ head movements to collect training views—limiting it to
tabletop scenarios—and discretely updates the NeRF scene approxi-
mately every 5 seconds, combining it with a lower-quality point
cloud rendering for real-time visuals. Therefore, real-time AR/VR
telepresence with neural rendering at room scale remains an open
challenge.

We present GaussianNexus, a room-scale real-time AR/VR telep-
resence system utilizing Gaussian Splatting, combined with live

video, to provide high visual quality and full navigability—the re-
mote VR user can freely stand or walk anywhere within the re-
constructed local environment while retaining photorealistic scene
quality. Our system combines Gaussian Splatting, 3D segmentation,
and real-time object tracking to eliminate the need for retraining
the scene on the #y. GaussianNexus handles 2D and 3D content
updates separately. For 2D content (e.g., screens and whiteboards),
it overlays live, recti!ed video—captured by the 360° camera—onto
surfaces selected by the remote user. For 3D updates, Gaussian-
Nexus introduces a scene preparation phase, where the local user is
assisted in capturing and training Gaussian Splats, identifying and
segmenting interactable objects, and creating movable Gaussian
Splatting cutouts. This preparation only needs to be performed
once per environment; objects will be tracked across telepresence
sessions even if they are moved in the interim. During telepresence,
the system tracks these objects in real time as the local user inter-
acts with them, and synchronizes their poses within the Gaussian
Splatting scene for the remote user. Our technique computes mo-
tion updates continuously using a novel splat-rendering optimizer,
achieving an end-to-end latency of approximately 1 second (includ-
ing smoothing-induced delay) on a commodity computer system.
We demonstrate GaussianNexus across two example application
scenarios: tabletop remote instruction with planar objects, and col-
laborative room layout planning. We further validate the system’s
usability and potential in a user study with 9 participants. To the
best of our knowledge,GaussianNexus is the !rst system to combine
real-time scene updates, room-scale navigability, and photo-realistic
visual quality from any viewpoint. We believe GaussianNexus paves
the way toward synchronous, photo-realistic telepresence experi-
ences using neural rendering.

2 Related Work
The prior work most closely related to GaussianNexus involves
research on immersive telepresence and remote collaboration us-
ing AR/VR [23, 25, 52, 67, 70]. Such systems typically reconstruct
the physical environment of a local user and virtually “teleport” a
remote user into this shared space. The most common approaches
for reconstructing and representing physical environments in telep-
resence include 360° video [23, 40, 57, 67] and RGB-D-based re-
constructions, such as point clouds [1, 26–28, 52, 70] or textured
spatial meshes [30, 66, 76]. More recently, emerging neural ren-
dering techniques-such as NeRF [6, 12, 48, 50] and Gaussian Splat-
ting [10, 36]-have enabled photo-realistic 3D scene representations,
demonstrating great potential as media for immersive experiences
and remote collaboration. Here, we review prior telepresence sys-
tems leveraging these media to contextualize our contributions.

2.1 360° Video Telepresence
Rendering 360° video in virtual reality allows a remote user to om-
nidirectionally view a space from a !rst-person perspective. With
commodity 360° cameras capable of streaming at 6–8K resolution,
telepresence systems using 360° video achieve relatively high visual
realism [23, 40, 57]. Previous studies have applied 360° video telep-
resence in virtual tourism [8, 9, 34], remote guidance of physical
tasks [54, 55], and collaborative prototyping [25]. However, while
360° video creates the illusion of immersive 3D space, it inherently
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remains a 2D texture, limiting richer spatial interactions such as
free navigation and scene augmentation.

In traditional 360° telepresence, the remote user’s viewpoint is
!xed at the camera position. Systems with stationary camera se-
tups [25, 57] constrain the remote user’s viewpoint and mobility.
To mitigate this, previous research mounted 360° cameras directly
onto local users [40, 66–69]. For instance, JackInHead [34] placed a
camera on the local user’s head, enabling remote users to share the
local user’s perspective. Teo et al. [66, 68, 69] further allowed users
to visualize each other’s real-time viewpoints, enhancing collabo-
rative awareness[7, 19, 65]. Some systems have explored hand-held
360° cameras [55], allowing the local user to guide remote collab-
orators for close inspection and instruction. However, mounting
cameras onto the user’s body introduces inconsistencies between
physical and perceived motion, potentially causing simulator sick-
ness [20, 22, 35, 72], while limiting the remote user’s independent
exploration. Alternatively, mounting 360° cameras onto robotic plat-
forms [31, 32] o"ers mobility but is expensive and cumbersome for
general use.

Prior research emphasizes maintaining mutual awareness be-
tween collaborators through a shared “reference” space [7, 65].
Consequently, 360° telepresence systems have implemented syn-
chronized interaction techniques, including hand-rays and annota-
tions [25, 57, 68, 69]. However, the lack of binocular depth percep-
tion in monocular 360° video restricts richer interactions, such as
manipulating shared virtual assets. Huang et al. [25] proposed ren-
dering virtual objects monocularly along with the 360° video, albeit
at the expense of accurate depth perception during interaction.

2.2 RGB-D Reconstructed Telepresence
Compared to 360° video, RGB-D reconstructions—such as point
clouds [1, 28, 52, 75] and textured spatial meshes [30, 66, 76]—are in-
herently 3D, allowing remote users to freely explore environments
with accurate depth perception. KinectFusion [28] !rst demon-
strated RGB-D reconstruction using consumer-grade hardware.
The asymmetrical collaboration system Volumetric Mixed Reality
Telepresence [27] streams real-time point cloud reconstructions of
local workspaces, supporting remote guidance for physical tasks.
Loki [70] integrates similar remote guidance systems with addi-
tional interaction methods like annotations and recorded playback.
Extending this approach, Irlitti et al. [26] proposed symmetrical
remote collaboration by merging real-time point clouds from two
physically separate but identical environments.

Despite superior spatial perception and richer interaction ca-
pabilities, RGB-D reconstructions typically su"er from lower vi-
sual quality [67], including reduced !elds-of-view, occlusion issues,
noisy depth capture, and inaccurate lighting. Holoportation [52]
addressed these limitations by capturing local environments using
multiple RGB-D cameras from di"erent angles, signi!cantly im-
proving visual !delity. However, such setups require specialized,
high-end hardware and substantial bandwidth, making them less
accessible to general users.

2.2.1 Combining 360° Video and RGB-D Reconstruction. Prior re-
search has also explored combining RGB-D reconstructions with
360° video [67] to take advantage of their complementary strengths:

360° video prioritizes visual quality at the expense of spatial interac-
tivity, whereas RGB-D reconstruction prioritizes spatial interaction
over visual !delity. Research by Teo et al. [40, 66–69] has explored
combining these two media for remote collaboration. Their systems
integrated recorded 360° panoramas and live 360° video streams
into static spatial meshes [66]. Teo et al. [67] and Gao et al. [16]
further proposed switching between live 360° video and RGB-D re-
construction. However, the di"ering interactive modalities required
by these media result in frequent context switching, which could
increase the user’s mental load.

Huang et al. [25] proposed representing scenes primarily with
360° video, embedding a registered spatial mesh to facilitate realistic
physical interactions with virtual objects. They additionally enabled
users to copy and extract synchronized “cutouts” from 360° videos
as textured spatial meshes, o"ering an alternative to physical scene
navigation. Despite these improvements, systems combining 360-
degree video and RGB-D reconstruction still struggle to provide
fully natural and realistic telepresence experiences due to mode-
switching and inconsistent visual quality.

2.3 Neural Rendering and AR/VR Collaboration
Neural rendering is a class of emerging techniques that leverage
neural networks or di"erentiable representations to synthesize
novel views from images [6, 12, 36, 48, 50]. These methods generate
photo-realistic renderings of 3D scenes and are capable of captur-
ing subtle visual details such as complex material properties and
lighting e"ects.

The !rst widely recognized neural rendering technique, Neural
Radiance Fields (NeRF) [48], models a scene by representing the
color and density along spatial rays using a fully connected feed-
forward neural network. Mip-NeRF 360 [6] extends this framework
to handle unbounded scenes by introducing hierarchical sampling
and mipmapping strategies. While early versions of NeRF required
tens of hours to train, Instant-NGP [50] introduced a multireso-
lution hash encoding that drastically reduced training times to
minutes or even seconds.

More recently, Gaussian Splatting [36] has emerged as an al-
ternative to NeRF. Instead of modeling scenes implicitly through
ray-based neural !elds, Gaussian Splatting represents scenes ex-
plicitly using a set of 3D Gaussians with di"erentiable parameters,
trained via gradient descent. This explicit representation enables
e$cient rendering and allows for more intuitive scene editing and
manipulation compared to NeRF-based approaches. Strictly speak-
ing, Gaussian Splatting does not involve neural networks, but is
often loosely categorized as “neural rendering” due to its di"eren-
tiable formulation.

Unlike video or point clouds, both NeRF and Gaussian Splatting
are static scene representation techniques. Although creating live
photorealistic human avatars with neural rendering is already pos-
sible [29, 39, 41, 47, 47, 58, 79], rendering general dynamic scenes
in real-time (e.g., 30fps) remains largely infeasible due to the signif-
icant computational demands of modeling and retraining to arbi-
trary dynamic content. Recent advances in 4D reconstruction with
neural rendering [15, 43, 56, 64, 74] targets volumetric video recon-
struction. GaussianFlow [43] and 4DGS [74] provide the ability to
generate dynamic frames at up to one frame every 10 seconds (i.e.,



Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato et al.

0.1 fps), but they only demonstrate processing pre-recorded video.
Quark [14] is the !rst system to achieve 30 fps Gaussian Splatting
reconstruction and rendering. However, it requires a large array of
cameras (e.g., 8 cameras spaced 30 cm apart), and movements be-
yond the camera’s baseline can signi!cantly degrade visual quality
or cause reconstruction failure. These limitations preclude its use
in telepresence scenarios, where free navigation and continuous
scene consistency are essential.

Due to the above challenges, few prior works have applied neural
rendering to real-time, synchronous remote collaboration. To the
best of our knowledge, the only existing system that precedes ours
is SharedNeRF [59], which detects changes in a dynamic scene using
optical #ow and retrains the scene representation using Instant-
NGP [50]. However, SharedNeRF relies on a user’s natural head
movement to collect new training data, limiting its application to
tabletop-scale collaboration. At room scale, such a system would
require users to continuously walk around the scene to gather up-
dated images, signi!cantly disrupting the collaborative experience.
Furthermore, SharedNeRF discretely updates its scene representa-
tion approximately 5 seconds after detecting a dynamic change and
bridges this gap using real-time point cloud rendering—resulting in
a noticeable compromise in visual quality. In contrast, with Gaus-
sianNexus, users pre-identify and segment dynamic components
before collaboration begins, eliminating the need for in-session
scene retraining. By tracking the 3D pose of these dynamic ele-
ments in real time, GaussianNexus continuously updates the Gauss-
ian Splatting scene with reduced delay, maintaining high visual
!delity throughout the collaborative session.

3 System Design Principles
Distilling from the design choices and gaps left by the related work,
here we identify the system design principles and technical chal-
lenges for our system, justifying the features our system imple-
ments, which will be detailed in Section 4.

3.1 Photo-Realism with Spatial Interactivity
Prior studies have shown that higher visual quality and resolution
generally lead to better immersion and presence [63]. Besides neural
rendering, scene representation based on 360° video [23, 57] o"ers
similarly high visual !delity, despite its limited spatial interactivity.
While combining 360° video with RGB-D reconstruction improves
interactivity, switching between modalities with inconsistent visual
quality disrupts continuity and breaks the sense of realism.

Inspired by prior e"orts to combine telepresence media, Gaus-
sianNexus integrates Gaussian Splatting, 360° video, and RGB-D
spatial reconstruction into a uni!ed system. To maintain consistent
photo-realism, our system adopts Gaussian Splatting as the pri-
mary scene representation medium. While projected, recti!ed 360°
video is used for updating dynamic surfaces (e.g., screens, white-
boards), we avoid visually presenting point clouds or spatial meshes,
which would compromise visual consistency. Instead, Gaussian-
Nexus maintains a hidden spatial mesh registered to the Gaussian
Splatting scene. This mesh enables physical e"ects – such as col-
lisions and rigid-body interactions – enhancing the user’s sense
of physical presence and spatial realism. The system also o"ers

common collaborative modalities such as hand-rays, annotations,
virtual avatars, and shared virtual primitives.

3.2 Scalability to Room-Scale Environments
Telepresence systems may support remote activities across di"erent
spatial scales, ranging from tabletop interactions [33, 59], to room-
scale environments [53, 70], and even unconstrained spaces [34].
Existing telepresence systems that apply neural rendering to the
task space (i.e., beyond avatar reconstruction), such as Shared-
NeRF [59], are limited to tabletop collaboration. Scaling neural ren-
dering–based telepresence to support broader applications—such as
shared immersive experiences [53] or collaborative indoor layout
planning [78]—remains an open challenge.

We identify the core bottleneck in scaling such systems to be
the need for on-the-#y scene retraining. This process requires con-
tinuous capture and updating of the scene dataset. While natural
head movement from a wearable camera may su$ce for tabletop
interactions, the same approach at room scale would require the
user to traverse the entire space continuously, severely disrupting
collaborative #ow.

GaussianNexus eliminates the need for retraining during the
telepresence session by introducing a scene preparation phase.
Prior to the session, the system assists users in identifying and
segmenting objects they expect to interact with into 3D Gaussian
Splatting copies that can be individually tracked and moved. This
converts the problem of retraining into one of 3D object tracking.
The preparation process should be reusable across sessions to re-
duce overhead. The object tracking is then performed with a 360°
camera which omnidirectionally monitors the scene in real time.
Although it is designed for room-scale telepresence, the system
remains compatible with smaller-scale collaboration (e.g. tabletop
interaction).

3.3 Low-Latency Dynamic Content Integration
Scene retraining is also a key bottleneck when integrating dynamic
content into neural rendering telepresence. To address this chal-
lenge, GaussianNexus introduces a dual-mode dynamic update strat-
egy. For dynamic 2D content (e.g., screens or whiteboards), we
directly re-project and overlay 360° video onto user-selected sur-
faces at runtime. For dynamic 3D content, as previously described,
we leverage the object segmentation performed during the scene
preparation phase, e"ectively transforming dynamic scene updates
into a 3D object tracking problem.

However, general-purpose 3D object tracking from monocular
RGB video remains an open problem in computer vision. Existing
methods, such as YOLO3D [49], SAM3D [77], SMOKE [46], and
MediaPipe Objectron [2, 3], typically rely on object categories (e.g.,
cars, pedestrians). Adapting such methods to each new telepresence
scene would require extensive dataset collection and retraining,
introducing signi!cant overhead.

Consequently, a critical challenge for GaussianNexus emerges:
achieving general-purpose, category-agnostic 3D object tracking
within a Gaussian Splatting-based scene representation. To address
this, our system utilizes the existing 360° video feed to preserve
hardware simplicity and omnidirectional coverage. An alternative
choice is to use the HoloLens’ embedded depth camera. However,
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this requires the user to look at the objects they are manipulat-
ing, precluding eyes-free manipulation. It is also possible to use a
dedicated depth camera such as Microsoft Kinect Azure 1, while
further complicating the system with extra spatial registration and
synchronization.

Therefore, we developed our own object tracking technique that
employs the Gaussian splats of pre-segmented objects as tracking
priors. This tracking solution should operate close to real time,
ensuring low-latency updates without disrupting collaborative in-
teractions.

4 The GaussianNexus System
4.1 System Architecture
We implemented GaussianNexus using Unity 2021.3.20f1. The sys-
tem can be con!gured and deployed in either AR or VR mode. In a
typical session, the AR user is physically present in the local envi-
ronment and wears a Microsoft HoloLens 2 2. The VR user joins the
environment remotely via a Meta Quest 3 headset 3. An Insta360 X3
360° camera (with a maximum streaming resolution of 5760 ↑ 2880)
at the AR side captures and streams 360° video of the local envi-
ronment to the remote user 4. Meanwhile, the HoloLens maintains
a spatial mesh of the physical world, which is also streamed to
the VR side in real-time. We illustrate the system architecture of
GaussianNexus in Figure 2.

To spatially register the Gaussian Splatting scene with the phys-
ical world (see Section 4.2.1), we attach two QR codes to !xed
positions on the wall. An additional QR code is mounted on the 360°
camera to track its pose. On the VR side, the Gaussian Splatting
scene is rendered in Unity. Concurrently, the same machine runs a
3D object tracking algorithm (see Section 4.4), which takes the 360°
video stream and YOLOv11 [37] object detection results as input.
This algorithm synchronizes physical object movements from the
local AR environment with their counterparts in the remote VR
scene. The VR system runs on a desktop equippedwith an Intel Core
i9-12900KF 3.2GHz CPU, 64GB of RAM, and an NVIDIA GeForce
RTX 4090 GPU. Both AR and VR users see each other as rigged
virtual avatars, and are equipped with ray pointers, shared virtual
objects, and synchronized annotations.

4.2 Scene Capture and Preparation
GaussianNexus presents the local environment to the remote user
primarily through Gaussian Splatting, which we train using the
original 3D Gaussian Splatting pipeline [36]. This process requires
the local user to record a video of the physical scene and extract
frames as individual images. We then use COLMAP [60, 61] to es-
timate camera poses for these images. With the extracted frames
and corresponding poses, the user can run the training script pro-
vided in the 3D Gaussian Splatting repository 5 to reconstruct the
environment in 3D Gaussian splats. We then use an open-source

1https://azure.microsoft.com/en-us/products/kinect-dk
2https://learn.microsoft.com/en-us/hololens/
3https://www.meta.com/ca/quest/quest-3/
4https://unity.com/
5https://github.com/graphdeco-inria/gaussian-splatting

Gaussian Splatting for Unity tool 6 to convert the reconstructed
scene to Unity assets and render them.

The time required for training scales with the number of input
images. Through our testing, we found that using approximately
300–400 images o"ers a good balance between visual quality and
e$ciency, resulting in a total processing time of around 30 minutes
(including both camera pose estimation and training). In Figure 3a
and 3b, we show a side-by-side comparison of the real-world lab
space and the reconstructed Gaussian Splatting environment.

4.2.1 Aligning the Virtual and Physical Worlds. As previously de-
scribed, GaussianNexus combines 3D Gaussian Splatting, 360° video,
and spatial meshes. To achieve this, it is essential to spatially align
the virtual and physical environments. More speci!cally, the key
technical challenge is to establish a common reference space shared
between the Gaussian Splatting scene and the AR world.

Before capturing the environment, the local user needs to instru-
ment the physical space by attaching two QR codes to orthogonal
walls in the room. Figure 3c shows an example setup. If the codes
are placed on non-perpendicular walls, users will need to manually
specify the angle between the QR code planes.

To use these QR codes as spatial anchors, our system must de-
termine their poses within the coordinate system of the Gaussian
Splatting scene. A naive solution would be to detect the QR codes
directly from the Gaussian Splatting reconstruction, but this as-
sumes the QR patterns are clearly preserved. Instead, our system
traverses the set of original captured images. For any image con-
taining a QR code, we detect its transform relative to the scene
origin using Python libraries (pyzbar 7 and pycolmap 8), and then
uses RANSAC to !t a least squares model of where the corners
should be. Since COLMAP [60, 61] provides all camera poses in the
Gaussian Splatting coordinate system, we can then derive the QR
code’s global pose relative to the scene origin. In theory, two images
per QR code are su$cient to recover its pose. In practice, within
the 300–400 image sets typically used for training, each QR code
appears in approximately 10–40 frames. We average the recovered
poses across all such images to improve robustness and accuracy.

With the above computation, we align the Gaussian Splatting
scene with the physical environment. We observed that COLMAP
and the 3D Gaussian Splatting pipeline do not guarantee alignment
with the real-world scale. In our captured lab environment, the
reconstructed scene was nearly twice as large as the actual space,
with slight di"erences in scale along the X, Y, and Z axes. To address
this, we apply a scaling transformation to the Gaussian Splatting
scene. Speci!cally, we calculate the scale ratio for each axis inde-
pendently by comparing the physical and virtual dimensions of the
QR code anchors. These axis-speci!c ratios are then used to scale
the scene accordingly, aligning it more accurately with the physical
environment.

We then establish a common reference space between the Gauss-
ian Splatting scene (i.e., the VR world) and the AR environment.
Given the computed transforms between the virtual QR codes and
the origin of the Gaussian Splatting scene, we replicate this spatial
relationship in the AR application. Speci!cally, we place a shared

6https://github.com/aras-p/UnityGaussianSplatting
7https://pypi.org/project/pyzbar/
8https://colmap.github.io/pycolmap/index.html
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Figure 2: System architecture of GaussianNexus: The AR user side is equipped with a HoloLens 2 and an Insta360 camera,
which streams RGB video to a local server over Wi-Fi. The Virtual Scene Tracking Server performs object identi!cation, 3D
pose estimation, and Gaussian splat updates based on the captured scene. The processed data — including dynamic object poses
and user tracking—is synchronized with the VR user via Ethernet. The VR user, connected through a Quest Link to a desktop
PC, receives real-time updates of the shared scene.

(a) (b) (c) (d)

Figure 3: (a) A training image used in the generation of the Gaussian splats. (b) The resulting Gaussian Splatting scene rendered
in Unity from a similar viewpoint, featuring a virtual avatar and annotation. (c) Orthogonal QR codes employed for scene
registration between the physical and virtual environments. (d) The spatial mesh captured by the HoloLens 2, overlaid on the
Gaussian Splatting scene.

origin (i.e., an empty Unity game object) in the AR world that main-
tains the same relative transform from the physical QR codes as the
VR origin does from the virtual QR codes. This shared origin serves
as a proxy for the VR coordinate system within the AR application.
With the shared origin in place, any virtual asset shared between
the AR and VR environments can be spatially aligned by transform-
ing its pose relative to it. This ensures consistent placement and

behavior of shared content across both local and remote users. In
Figure 3d, we demonstrate the result of the scene alignment with a
spatial mesh of the physical environment (captured by HoloLens 2)
matched to the Gaussian Splatting scene.

4.2.2 Object Pre-segmentation. To facilitate 3D updates during
telepresence (see Section 4.4), our system assists the local user
in pre-segmenting the objects they intend to interact with. We
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build on Segment-Any-3D-Gaussians (SAGA) by Cen et al.[10], a
3D segmentation method based on Segment Anything[38], which
generates segmentation masks for 3D Gaussian Splatting recon-
structions. To enable segmentation, SAGA’s repository 9 provides
a script to pre-process the same image set used for training the 3D
Gaussian Splatting scene, which takes around 30 minutes on our
machine with 300-400 images.

Since GaussianNexus incorporates YOLOv11 [37] as a core com-
ponent for 3D tracking (see Section 4.4), the pre-segmentation
process begins by automatically capturing an image of the scene
using the 360° camera. We then apply YOLOv11 to detect bounding
boxes for all recognizable objects in the scene (see Figure 4a). These
bounding boxes are used as initial prompts for SAGA. The local
user can then manually re!ne the segmentation masks for objects
they plan to interact with, using the interactive interface provided
by SAGA (see Figure 4b).

Once the masks are !nalized, our system extracts individual
Gaussian Splatting reconstructions for each segmented object and
removes their original representations from the main scene. The
segmented objects are subsequently overlaid back into the main
scene. Because both the main scene and the individual objects
originate from the same reconstruction, the objects retain their
correct spatial positions without requiring additional alignment.
Our system also uses the splat positions of each object to assign
approximate 3D collision boxes, which can be manually re!ned by
the user if needed.

4.2.3 A Note on E!ort and Reusability. For experienced users (e.g.,
the authors), the full scene capture and preparation phase takes ap-
proximately 1.5 hour for a setup with around 10 interactable objects.
Speci!cally, the user !rst captures the scene over a 3-minute video
recording. Training 3D Gaussian Splatting and SAGA takes approx-
imately 1 hour, followed by object segmentation and importing
into the Unity scene, which takes about half an hour for 10 objects.
We acknowledge that this process introduces setup overhead for
the local user. However, once prepared, the scene can be reused
across multiple telepresence sessions. In Section 4.4, we describe
how GaussianNexus supports scene reuse even if the interactable
objects have been moved between sessions. We further discuss the
reusability and limitations of this preparation process in Section 8.

4.3 2D Updates with 360° Video Projection
GaussianNexus uses 360° video to update 2D content surfaces in
the scene, such as whiteboards, screens, or tabletop interaction
with planar objects. During a telepresence session, the remote VR
user can use their hand-ray to select the four corners of a surface
they would like to make live. Our system then extracts the corre-
sponding portion from the 360° video, recti!es it, and overlays it
onto the selected surface within the Gaussian Splatting scene. Our
system allows the user to create multiple live surfaces in the same
telepresence session. We now describe the technical details behind
this process.

To enable live surfaces through 360° video, it is essential to align
the coordinate system of the 360° camera with that of the VR world.
This alignment is straightforward, as the AR and VR environments

9https://github.com/Jumpat/SegAnyGAussians

(a)

(b)

Figure 4: (a) Raw scene object detections produced by
YOLOv11seg. (b) The SegAnyGaussians user interface, used
to segment a chair from a trained Gaussian Splat representa-
tion.

have already been spatially synchronized as described earlier. We
attach a QR code to the 360° camera, allowing the HoloLens 2
to track its pose in real time. This pose is then transformed and
synchronized to the VR coordinate system.
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The 360° camera streams raw !sheye video using an equidistant
!sheye model, as described in Equation 1, where 𝐿 is the radial
distance from the image center, 𝑀 is the focal length, and 𝑁 is the
angle from the optical axis (i.e., the zenith angle). The optical axis
is aligned with the camera’s look direction, determined from its
pose in the AR world.

𝐿 = 𝑀 · 𝑁 (1)
For each surface selected by the user, we create a quad based on

the four speci!ed corners. A custom shader is then used to extract
the corresponding pixels from the 360° camera’s texture and map
them onto the quad using the camera’s intrinsic parameters and the
!sheye projection model, e"ectively turning the surface into a live
video display. Notably, our system allows the local user to move
the 360° camera freely during the telepresence session, allowing
them to gain better resolution by moving the camera closer to a
surface they actively work on.

4.4 3D Updates with Object Tracking
To support dynamic interactions with physical objects, Gaussian-
Nexus enables real-time 3D updates through object tracking. Build-
ing on the object pre-segmentation in the scene preparation phase,
our system continuously tracks the segmented objects and syn-
chronizes their poses within the Gaussian Splatting scene during
telepresence.

4.4.1 2D Object Tracking with Identity. The !rst step of our 3D ob-
ject tracking pipeline is to track object identities and their positions
in the 2D video stream. For this purpose, we use YOLOv11 [37].
We begin by streaming the 360° video feed to YOLO. However,
YOLOv11 requires a 640 ↑ 640 recti!ed image as input, rather than
a raw !sheye texture. To address this, we use the same projection
approach described in Section 4.3 to project and rectify a central
portion of the 360° camera’s front video into a 640 ↑ 640 video
texture. The size of the central portion can be dynamically adjusted
by the local user through the Unity interface, both before and dur-
ing the telepresence session. This e"ectively changes the !eld of
view (FoV) of the recti!ed video texture. Because we use a 360°
camera, the FoV of the recti!ed view can approach 180°. Currently,
our system only uses the front lens of the 360° camera for object
tracking, although it is trivial to apply the same process to the back
lens. Since our Unity application already receives the 360° video
stream for 2D updates in VR mode, we implement the projection
and recti!cation pipeline in Unity as well. The resulting recti!ed
video feed is shared with YOLOv11, which we run with a Python
Script, via a local network socket.

The original YOLO algorithm is designed for object detection
rather than tracking. It assigns class labels to objects in each frame
but does not maintain consistent object identities over time. As a
result, naively applying YOLO for tracking can fail when an object’s
class is inconsistently predicted across frames or when multiple in-
stances share the same class label. To address this, we developed an
object tracking layer with identity management on top of YOLOv11.
At the start of a telepresence session, the system displays the !rst
frame processed by YOLO to the users. The users are then prompted
to select which detected objects they would like to track, which
should be a subset of the objects pre-segmented during the scene

preparation phase. Each selected object is assigned a unique ID. For
each subsequent frame, we apply a lightweight nearest-neighbor
association algorithm to match current YOLO detections with the
latest known positions (i.e., the center points of the bounding boxes)
of tracked objects. A threshold of 100 pixels is applied to avoid as-
sociating selected objects with unrelated detections from the !rst
frame. We further classify each object’s visibility state based on
changes in its bounding box: if the size changes by more than 20%
between frames, the object is marked as partially occluded; if no
match is found within the threshold, it is marked as fully occluded.
In addition to identity preservation, we estimate the motion of each
object by measuring its frame-to-frame displacement, which will
later be used to trigger 3D pose estimation for that object. Figure 5a
shows a frame with objects tracked by this adapted YOLO tracker.

4.4.2 3D Object Tracking with a Splat-Rendering Optimizer. We
introduce a novel splat-rendering optimizer that enables 4-DOF
3D object tracking from a monocular RGB camera within a scene
reconstructed using Gaussian Splatting. Intuitively, our optimizer
estimates an object’s 3D pose by aligning its virtual appearance—
rendered by projecting its Gaussian Splatting copy onto the same
recti!ed texture used by YOLO—with its physical appearance in
the YOLO video feed.

Physical-Virtual Object Association: At the beginning of the
very !rst telepresence session, our system automatically associates
the physical objects selected by the user with their corresponding
Gaussian Splatting copies. For each selected object, we back-project
the center of its 2D bounding box into a 3D ray within the Unity
scene. Since the Gaussian Splatting scene has already been aligned
with the physical world, these rays intersect with the respective
Gaussian Splatting copies of the objects, allowing the system to
establish the association.

Optimizer Initialization:When the 2D object tracker detects
that an object has moved, it triggers the optimizer to update the 3D
pose of the corresponding Gaussian Splatting copy. A key insight
here is that the optimizer estimates the object’s position in camera
space. Since the object’s 2D location—provided by YOLO—already
constrains its X and Y position relative to the camera, the optimiza-
tion search space can be reduced primarily to the Z-axis (i.e., depth).
To account for potential inaccuracies in the tracked pose of the 360°
camera, our optimizer still estimates the X and Y components, but
restricts them to within 5 cm of the camera’s Z-axis. This bounds
lateral drift while maintaining #exibility. Then, at the start of each
3D pose estimation, we initialize the optimizer’s X and Y positions
based on the current YOLO detection, while the Z position and
rotation are initialized using their latest known values from previ-
ous updates. The position vector is transformed into camera space,
while the rotation vector, represented in Euler angles, is preserved
in world space.

Optimization with Geometry Similarity: With the proposed
pose at each optimization step, the optimizer compares the 2D
appearance of the physical object and its Gaussian Splatting copy
from the perspective of the camera.

The 2D physical appearance is obtained from YOLO. We used the
YOLOv11m-seg model 10 for this purpose, which simultaneously
returns an object’s bounding box and its segmentation mask. The
10https://docs.ultralytics.com/tasks/segment/
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(a) (b) (c)

Figure 5: (a) Object IDs corresponding to YOLOv11 tracking results. (b) Keypoint correspondences between the physical book
captured by the camera (left) and the Gaussian splat rendering of the book (right), used to achieve rotation alignment. (c)
Contour extracted from a camera image using the YOLOv11 segmentation mask.

tracked object’s 2D appearance is the thus its segmented image from
the YOLO video feed. The 2D virtual appearance of the tracked ob-
ject is obtained from Unity. Since Unity maintains the 360° camera’s
extrinsic and intrinsic parameters, it is able to project the tracked
object’s Gaussian Splatting copy to the camera plane in the same
way as we obtained the YOLO video feed (see Section 4.4.1). Note
that we also use the geometry similarity to !lter false movement
detection by the YOLO tracker. If the YOLO tracker initiates a pose
estimation without signi!cant di"erence in geometry (checked by a
Chamfer distance [4] threshold, see below), our system terminates
the pose estimation.

Geometry is measured using two complementary approaches:
keypoint matching and contour alignment. For keypoint matching,
we extract keypoints from the tracked object’s physical and virtual
appearances using SuperPoint [13], and perform feature matching
with LightGlue [44]. For contour alignment, we use OpenCV 11

to extract contours from both appearances (Figure 5c shows an
example contour), and then compute the Chamfer distance [4]
between them. However, we found that directly optimizing with a
combined loss based on keypoint matching and contour alignment
does not perform well in practice, for two main reasons. First, we
found that signi!cant di"erences in object orientation led to a large
number of keypoint mismatches, especially when dealing with
objects with plain textures. Second, although contour alignment is
generally e"ective for position tracking, it is relatively insensitive
to object rotation. Objects with di"erent orientations can produce
similar Chamfer distances, which occasionally causes the optimizer
to get stuck in local minima.

To overcome the above issues, we developed a staged optimiza-
tion process. While the tracked object’s physical and virtual appear-
ances may di"er in lighting, we observed that when their poses
align, SuperPoint [13] and LightGlue [44] consistently return the
most keypoints and matches. Therefore, we !rst coarsely search
the rotation space (at 45° steps) to !nd the best initial rotation.
Each candidate pose is evaluated using the following loss function,
which penalizes both the low number of keypoint matches and the
presence of outliers:

11https://github.com/opencv/opencv

Let:
• 𝑂𝑃 be the candidate rotation
• MatchCount(𝑂𝑃) be the number of keypoint matches for a
given rotation 𝑂𝑃

• InlierRatio(𝑂𝑃) be the fraction of initial matches that remain
after performing RANSAC with a re-projection threshold of
2px.

The keypoint matching loss is de!ned as:

𝑄𝐿𝑀𝑁𝑂𝑃𝑄𝑅𝑆 (𝑂𝑃) = ↓MatchCount(𝑂𝑃) · InlierRatio(𝑂𝑃) (2)

To compute the initial rotation 𝑂𝑃, the optimizer ultimately com-
putes:

𝑂𝑃 (0) = argmin𝑂𝑁↔{0°,45°,...,315°}𝑄keypoint (𝑂𝑁) (3)

This rotation sampling technique also guarantees that the optimizer
can converge to an approximately correct rotationwithin 1 iteration,
regardless of the orientation di"erence between the physical and
virtual object. Figure 5b shows an example of an optimal keypoint
match between the physical and virtual appearance.

We also !nd that this initialization process becomes costly if we
traverse all three rotation axes. Given that most objects in typical
telepresence scenarios rest on horizontal planes, we constrain our
optimizer to estimate only the Y-axis rotation. While this limits our
tracking to 4 degrees of freedom (4-DOF), it enables low-latency
optimization and remains e"ective for common collaborative use
cases. After determining the initial rotation, our optimizer proceeds
to re!ne the pose using contour alignment. While combining Cham-
fer distance with keypoint matching might improve accuracy, we
opt to use only the Chamfer distance in this re!nement step to
ensure the entire optimization remains within a 1-second budget.
This choice provides a reasonable balance between accuracy and
computational e$ciency.

Let:
• ProjContour be the set of 2D points from the projected con-
tour of the Gaussian Splatting copy.

• ObsContour be the set of 2D points from the observed con-
tour (e.g., from segmentation).
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The contour alignment loss is de!ned as:

𝑄contour =
1

|ProjContour|
∑

𝑂↔ProjContour
min

𝑇↔ObsContour
↗𝑅 ↓ 𝑆↗2

+ 1
|ObsContour|

∑
𝑇↔ObsContour

min
𝑂↔ProjContour

↗𝑅 ↓ 𝑆↗2

(4)

To optimize the contour alignment loss, we use SciPy’s imple-
mentation of the Powell [71] method 12. We restrict y rotation to be
±22.5 degrees around the rotation estimated by keypoint matching,
and limit translation to ±5cm in x and y, with ±0.5m in z. Since we
provide the optimizer with strong initial estimates, we !nd these
bounds balance accuracy and performance, allowing the optimizer
to converge to an accurate solution quickly.

SmoothingResults: We apply a Kalman !lter [42, 73] to smooth
the pose updates. Based on empirical tuning, we set the process
and measurement standard deviation to 0.3 and 0.1 respectively,
providing a balance between temporal smoothing and latency. The
optimizer continues to re!ne the object’s pose while it is in motion.
Since the Gaussian Splatting copies can be freely transformed, we
linearly interpolate both position and rotation between successive
updates. This ensures that the remote VR user perceives smooth
and continuous object motion, even if pose updates arrive with
slight delays.

Tracked Object Recovery between Sessions: Between telep-
resence sessions, GaussianNexus can recover and re-track objects
even if they have been moved. The system stores a list of objects
tracked in the previous session. At the start of the next session,
when the system prompts the user with the !rst YOLO detection
frame (see the “Physical–Virtual Object Association” section), the
local user only needs to select the same objects for GaussianNexus
to resume tracking. These objects do not need to be in their original
positions, as the optimizer initializes the X and Y positions based on
YOLO detections. This allows the system to automatically discover
the corresponding 3D ray intersecting with the physical object and
move its Gaussian Splatting copy accordingly. This cross-session
object recovery capability enables users to reuse the same scene
preparation across multiple telepresence sessions, signi!cantly re-
ducing setup overhead over time. We further discuss the system’s
support for cross-session continuity in Section 8.

5 Object Tracking Evaluation
5.1 Setup and Ground Truth
The performance of the 3D tracking system was evaluated at two
di"erent spatial scales: a room-scale setup involving a piece of fur-
niture (a chair), and a table-scale setup involving a book. Since we
aligned the Gaussian Splatting scene with the physical world, we
use the original position and rotation of a Gaussian Splatting copy
as the reference for ground truth. To ensure that the alignment
between the physical and virtual world is consistent, we check that
the scanned physical objects used for evaluation are unmoved at
the beginning of the evaluation. Then, by o"setting the targeted
objects with carefully measured distances in both the virtual and

12https://docs.scipy.org/doc/scipy/reference/optimize.minimize-powell.html

physical world, we obtain 6 ground truth poses for both the room-
scale and table-scale setup. The 6 positions altogether are parallel
to the x-z plane of the virtual scene. Since the positional optimiza-
tion is conducted in the camera space, moving objects through
these positions covers 3DOF positional translation, and a sepa-
rate rotation experiment covers rotation around the y-axis. For the
room-scale evaluation, a chair was tracked at six distinct ground
truth positions, spaced 1m apart. For the table-scale evaluation, the
6 positions are spaced 22cm apart on the z-axis and 26cm apart on
the x-axis. At each position, rotational accuracy was measured at
four orientations o"sets: 0°, 90°, 180°, and 270°.

5.2 Results
The results are summarized in Table 1. For the room-scale evalu-
ation, we achieve an average world-space o"set of 9.9 cm and a
average rotation error of 5.7°, which in theory should be adequate to
support room-scale activities. In Figure 6, we further illustrate the
positional tracking accuracy of our system through a scatter plot.
In the appendix, we also include the same plots in 3D (including
the Y-position) in Figure ??.

The evaluation on the tabletop scale shows better performance,
with an average world o"set of 7.5 cm and rotation error of just
3.2°. In our evaluation, we found that the performance deteriorates
with distance for both scenarios (P2 is the furthest from the camera
for the room-scale scenario, and P3 is the furthest for the table-top
scenario). We believe this is because, 1) the YOLO segmentation
performance reduces with further distance, and 2) the features and
contours become less representativewhen objects appear smaller on
the camera. For the room scale evaluation, the standard deviation of
tracking error is much higher. We hypothesize that this is because
the chair used for the room scale scenario poses an additional
challenge as it has a plainer texture (mostly gray), causing the
optimizer to be more susceptible to local minima. Meanwhile, in
the tabletop scale evaluation, the camera was positioned closer to
the object, potentially contributing to improved tracking reliability
as well.

6 Applications Scenarios
To demonstrate GaussianNexus’ practical utility, we describe the
potential application scenarios for 2D and 3D collaboration with
our system.

6.1 Immersive Telepresence with Live Surfaces
Collaboration on shared physical surfaces has been widely explored.
Prior research has enabled surface sharing using projectors [33]
and mixed reality headsets [24], allowing users to annotate directly
on physical screens and whiteboards, or collaborate using planar
objects such as cards or tangram puzzles. Extending from prior
work, GaussianNexus extends surface-based collaboration by situ-
ating the remote user inside a fully walkable and photo-realistic
scene reconstruction, while simultaneously supporting multiple
live surfaces through our 2D dynamic update feature. The users
can enjoy a movie together via shared projection, discuss shared
content on a screen, and gather around a desk to collaborate on
physical materials. Figure 7 illustrates a more concrete scenario in
the education context: a local user plays with tangram puzzles on a
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Table 1: Scene-Scale Tracking Accuracy Across Six Ground Truth Positions

Metric X (cm) Y (cm) Z (cm) World O"set (cm) Rotation (°)

Average Error 5.6 5.3 2.7 9.9 5.7
Std. Dev 6.3 5.1 4.6 4.4 12.0

Table 2: Tabletop-Scale Tracking Accuracy Across Six Ground Truth Positions

Metric X (cm) Y (cm) Z (cm) World O"set (cm) Rotation (°)

Average Error 5.0 2.2 2.9 7.5 3.2
Std. Dev 1.7 1.0 1.9 1.7 4.6

live desk surface, while a remote instructor guides them in forming
speci!c shapes (e.g., a !sh).

6.2 From Tabletop to Room-Scale Collaboration
GaussianNexus supports multi-scale 3D collaboration with photo-
realistic quality at multiple scales, ranging from tabletop activities
(e.g., virtual/physical chess playing) to room-scale collaboration
(e.g., layout planning [45, 78], storage management [11, 21], and
remote design and prototyping [18, 51]). However, common scene
representation media such as 360° video restrict user navigation,
preventing free movement within the environment. Meanwhile,
point cloud reconstruction lacks su$cient resolution and su"ers
from occlusions, limiting visual !delity—especially when objects
are viewed from arbitrary angles.

In Figure 8, we demonstrate a room layout planning scenario.
The local user selects several pieces of furniture they intend to set
up for a meeting, enabling GaussianNexus to track their movements
in real time. A remote instructor joins via telepresence, appearing
as an embodied virtual avatar, and guides the local user through
the setup process.

The remote instructor is equipped with standard collaborative
tools such as ray pointers and annotations. In addition, because they
are free to move naturally within the reconstructed environment,
they can use body language as a communicative modality. For ex-
ample, rather than pointing or annotating, the instructor can simply
walk to a location and ask the local user to move a piece of furni-
ture there. As the local user moves the furniture, GaussianNexus
continuously updates their 3D poses within the Gaussian Splatting
scene, allowing the remote instructor to perceive the changes in
real time.

7 User Study
We conducted a user study on GaussianNexus. With a room lay-
out planning task (similar to the one described in Section 6.2), we
evaluated our system’s usability and presence, and gathered user
feedback.

7.1 Participants
We recruited 9 participants (4 identifying as male and 5 as female,
average age 25.5) from the students at the local university. All
participants had some prior experience with remote collaborative

tools (e.g. Google Docs) and video communication tools (e.g. Zoom).
All participants had prior exposure to either AR or VR headsets.

Our study was reviewed and approved with the institutional
ethical board. Each participant was compensated with $16.

7.2 Study Procedure
Upon arrival, the experimenter greeted the participant and asked
them to review and sign a consent form. The participant then com-
pleted a brief tutorial to familiarize themselves with the Meta Quest
3 headset. After the tutorial, the experimenter and the participant
moved into two separate rooms divided by a wall.

The experimenter was situated in a room designated as the “local
physical space”, which had been previously reconstructed using
Gaussian Splatting and prepared through the scene preparation
process (see Section 4.2). Figure 9 shows the layout of this space,
which includes a desk, two chairs, and two stools—all con!gured
to be tracked by our system. The participant assumed the role of
the remote VR instructor, becoming telepresent in the Gaussian
Splatting scene and instructing the experimenter to set up the room.

The participant was !rst encouraged to explore the scene freely.
They were then given the following task prompt: “Suppose you
are going to have a meeting tomorrow with two classmates and
a professor. Please instruct your local collaborator to set up the
space.” We intentionally avoided providing a speci!c target layout
to allow participants to express their own spatial preferences.

The experimenter followed the participant’s instructions to ad-
just the furniture accordingly. Once the participant indicated that
they were satis!ed with the layout, the experimenter terminated
the application and invited the participant to complete the System
Usability Scale (SUS), the Slater-Usoh-Steed Presence Question-
naire [62], and a custom questionnaire (see appendix) designed to
gather qualitative feedback on their experience.

7.3 Results
We summarize the participants’ response to the SUS and the pres-
ence questionnaire in Figure 10 and Figure 11. We reversed the
scores and wording of negatively worded items (using 5 minus the
original score) in the SUS questionnaire to show better consistency,
although participants !lled out the original version of the question-
naire. Following the approach in [5], we report a SUS score of 85
for our system, which is considered “Excellent”.
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(a)

(b)

Figure 6: Positional tracking accuracy at two spatial scales.
(a) Room-scale evaluation results showing tracked chair po-
sitions relative to ground truth, with each point spaced 1 m
apart. (b) Tabletop-scale evaluation results for a tracked book,
with positions spaced 22 cm along the z-axis and 26 cm along
the x-axis. Note: Both plots share the same scale, which
makes the tabletop setup appear smaller.

7.3.1 Usability. Participants found our system easy to use (SQ3:
Mean = 4.44, STD = 0.53), and most reported that they think people
were able to learn it quickly (SQ7: Mean = 4.67, STD = 0.5). Several

participants (P3, P4) described the experience as “smooth enough”
and felt like they were in “a real room”. Despite some technical
limitations in our current implementation—speci!cally, the latency
caused by runtime optimization and objects occasionally not updat-
ing along smooth trajectories—the majority of participants (7 out
of 9) found the system consistent (SQ6: Mean = 4.11, STD = 1.05).
While latency and some inconsistencies due to imperfect tracking
are noticeable, though these issues were not signi!cant enough to
negatively impact task performance or the overall user experience.
For instance, P8 acknowledged that “the lag was noticeable, but it
didn’t break my immersion too much. . . it felt very fun and real,”
while P1 noted that although there are latency in the chairs’ move-
ments were discrete, it does not impact my ability to do the job in
this case”. P2 viewed the interaction as a generative process and
stated, “I don’t feel much delay or lag while performing the tasks. . .
the reconstructed chair in the 3D space is generated soon,” and P5
emphasized, “the objects ended up in the right position before I
wanted to check with the AR partner.”

7.3.2 Environment Realism and Presence. Participants felt a strong
sense of “being there” in our GaussianNexus environment (PQ2:
Mean = 4.78, STD = 0.44), with many expressing that the experience
felt more like a place they visited rather than something theymerely
viewed on a screen (PQ3: Mean = 4.44, STD = 0.73). P5 noted, “I can
see the place we are going to set up in 3D, and that’s much better
than seeing the place from a camera because it creates a better
sense of being at that environment,” highlighting how the spatial
immersion contributed to a stronger feeling of presence. Others (P8)
echoed this sentiment, stating that the experience enabled them
to “get to the places in the virtual space where I wanted to go, and
point exactly to where I wanted the AR user to look”. The enhanced
spatial freedom and interactivity led P4 to share that they could
“look and move around the environment without asking my AR
partner to “move the camera”. Several participants commented on
how the objects felt more natural and akin to real-world experiences.
For example, P1 noted, “Compared to 2D tools, it is more enjoyable
since the interaction is more natural and similar with what we used
to do in real world.”

8 Discussion and Future Work
Here we re#ect on our system’s technical contributions, drawing
results and observations from the system and user evaluation.

8.1 O"loading Online Retraining to Scene
Preparation

A key insight behind the design of GaussianNexus is the decision to
o%oad the need for on-the-#y retraining of Gaussian Splatting to
the scene preparation phase. By pre-segmenting the “live” compo-
nents of the environment – e"ectively creating Gaussian Splatting
copies of interactable physical objects – we enable those objects to
be independently tracked and updated during telepresence. This
design eliminates the need for runtime retraining or the fusion of
neural rendering with live point cloud streams, which often results
in degraded visual quality.

Compared to prior work in neural rendering-based telepresence,
such as SharedNeRF [59], our approach scales to room-scale inter-
actions, supports full navigability, preserves photorealistic visual
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(a) (b) (c)

Figure 7: This example demonstrates the use of 2D cutouts to enable a remote user to guide a local user through solving a
tangram puzzle. (a) The initial con!guration of the puzzle as seen from the AR user’s perspective. (b) The remote VR user
provides step-by-step instructions for placing the tangram pieces. (c) The completed puzzle, viewed from the remote user’s
perspective.

Figure 8: This demonstration showcases the system in a room layout planning scenario. Initially, the remote user employs 2D
annotations (the light green line in the !rst and fourth image) to indicate the desired position for a piece of furniture. The local
user then relocates the furniture accordingly, with GaussianNexus actively tracking the movement. Finally, the alignment
between the physical and remote environments is illustrated.

Figure 9: The starting layout of the room for the user study.

quality throughout the session, and reduces perceived latency dur-
ing collaboration. As revealed in our user study, our system was
e"ective in assisting the participants to complete the task of setting
up the room. Meanwhile, as revealed by the presence questionnaire,

Figure 10: System Usability Scale Five-Point Likert Scale Re-
sults: The negative items are inverted (QS2, QS4, QS6, QS8,
QS10) and each question is shortened for better visibility; the
original questions and raw user responses can be viewed in
Appendix A

most participants felt strong presence and had the sense of being
in the real, physical environment. We believe that the navigability
and photorealistic quality of our system is the key to e"ectiveness,
presence, and realism. We observed that some users walked or tele-
ported around the scene, inspecting it in the same way as what is
naturally possible in the real world. We believe the ability to use
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Figure 11: Presence Five-Point Likert Scale Results: Each
question is shortened for better visibility; the original ques-
tions and raw user response can be viewed in Appendix A

natural communication methods also aid ease of use and learnabil-
ity, which is highly rated in our SUS questionaire (SQ2, SQ3, SQ7,
SQ9, and SQ10). In particular, our system reduces the reliance on
common VR modalities such as hand pointers. In the context of
the room setup task, a user could directly walk to a location and
instruct the local user to move furniture there.

Our approach, however, introduces a trade-o": the local user
must complete a scene preparation phase. As outlined earlier, this
phase consists of (a) capturing the scene (3 minutes), (b) train-
ing Gaussian Splatting [36] and SAGA [10] (about 1 hour), and
(c) semi-automatic 3D object segmentation (about 30 minutes for
10 interactable objects). Among these, the capturing and training
stages are necessary for any telepresence application based on neu-
ral rendering and are likely to bene!t from future improvements
in training speed. Our system should be forward-compatible with
accelerated Gaussian Splatting pipelines, which may substantially
reduce preparation time.

Therefore, the current bottleneck lies in the 3D object segmenta-
tion step. While SAGA provides a strong foundation, automatically
applied segmentationmasks often leave behind “#oaters”—redundant
splats that require manual cleanup. In future iterations, we antici-
pate the potential for fully automating this step, for example, by
detecting and removing sparse, unconnected blobs of splats.

8.2 Reusability and Continuity Across
Telepresence Sessions

To alleviate the overhead of scene preparation, GaussianNexus is de-
signed to support reuse of a trained and con!gured scene acrossmul-
tiple telepresence sessions. As described at the end of Section 4.4.2,
the system can recover and track previously con!gured objects,
even if they have been moved between sessions. Currently, the
user must manually identify these objects—with assistance from a
stored object list in Unity—so that they can be re-associated with
the YOLO-based 2D object tracker. While this step only takes a few
seconds, it introduces unnecessary friction. In future work, we aim
to automate this process by matching YOLO-detected objects with
previously tracked Gaussian Splatting copies using shape similar-
ity, leveraging techniques already employed in our splat-rendering
optimizer.

At present, GaussianNexus does not support tracking newly
added objects that were not included in the original Gaussian Splat-
ting reconstruction. To address this, we plan to allow users to scan

and register new objects into the scene incrementally. Notably, re-
constructing individual objects is simpler and more e$cient than
scanning an entire environment. For example, Yang et al. intro-
duced GaussianObject, which enables high-quality reconstruction
of Gaussian Splatting objects from as few as four input images.

8.3 One-shot 3D Object Tracking
While the latency of our system is signi!cantly reduced and smoothed
compared to prior research in telepresence based on nueral render-
ing [59], the participants in our user study all found it “noticeable”.
This is to be expected because a scene update rate of 1-second, even
if smoothed and interpolated, is still far from the update rate of
typical video streaming (e.g., 30fps). The scene update latency of
GaussianNexus is mainly due to the object-tracking optimizer. Here,
we re#ect on its implementation and propose potential improve-
ments for future work.

The 3D object tracking module is the key enabler of Gaussian
Splatting scene updates in GaussianNexus. This module was nec-
essary due to the lack of zero-shot 3D pose estimation methods
for arbitrary objects using only monocular RGB input, without
category-speci!c !ne-tuning or additional datasets.

Our approach adopts a one-shot tracking strategy, leveraging the
information captured during the Gaussian Splatting scene recon-
struction. As demonstrated in our application scenarios and user
study, this module e"ectively supports users in completing collabo-
rative tasks. We constrain each object pose estimation to within 1
second, enabling #uid updates and continuous interaction. Since
users typically interact with at most two objects simultaneously,
our system remains e$cient even in multi-object scenarios—a trend
consistent with our study observations.

While achieving robust zero-shot tracking remains out of scope,
improving the e$ciency and robustness of our pipeline is a promis-
ing direction. Currently, the primary bottleneck is the repeated
2D projection of an object’s Gaussian Splatting copy at each opti-
mization step, which takes approximately 4 ms per frame. In future
work, we aim to pre-compute these projections across a range
of possible poses during scene preparation. Although this would
lengthen scene preparation time, it could signi!cantly improve run-
time performance and enable higher frame-rate tracking—further
enhancing temporal accuracy.

As with most vision systems, occlusion remains a key challenge.
Our current solution simply pauses pose estimation for occluded
objects, which can lead to tracking inconsistencies. During our user
study, such inconsistencies often occurred when one object blocked
another or when the local user walked in front of tracked items.
A potential future workaround is to incorporate occlusion-aware
rendering directly into the Gaussian Splatting scene. If tracking
runs at a su$ciently high frame rate, occlusions in the physical
scene could be mirrored by occlusions in the virtual view, allowing
the tracking system to rely on consistent virtual visibility.

While this work primarily contributes a room-scale telepresence
system with real-time neural rendering, further re!ning a general-
purpose Gaussian Splatting-based 3D tracker remains an exciting
direction for future research.
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9 Conclusion
We introduced GaussianNexus, a novel AR/VR telepresence system
that enables real-time, room-scale interaction with photorealistic
scenes through Gaussian Splatting and live video integration. By
leveraging prior scene training and persistent 3D object tracking,
GaussianNexus overcomes key limitations of current neural render-
ing based telepresence systems, eliminating the need for constant
retraining while maintaining visual !delity and spatial interactivity.
Our system enables remote users to move freely through virtu-
alized, photorealistic real-world environments while interacting
with dynamic content. With a sub-second end-to-end latency and
promising early user study results, GaussianNexus represents a step
forward in bridging immersive telepresence and neural rendering.
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