

Computer Science - Senior Capstone Project
Spring 2019

May 12, 2019

3D Point Cloud Registration Algorithms
for the

NYUSH IMA Telewindow Project

Final Report

Zhanghao Chen, Xincheng Huang

Supervised by: ​Michael Naimark

Mentor: ​Olivier Marin

Abstract
The goal of this project is to ​develop a set of algorithms that geometrically align, or “register”,
the ​3D point clouds captured by the depth cameras of “Telewindow” into one 3D image.
Current registration algorithms usually adopt a pipeline architecture with multiple stages.
Plenty of variants are available for each stage and there is not a standardized solution suited
for all applications. We build an experimental registration pipeline and investigate different
combinations of the algorithms from each stage to find the optimal pipeline under the
“Telewindow” project setting. We identify the most potential algorithm combinations as the
result of our experiments, which is able to provide an accurate registration result given clean
point clouds of a user’s figure.

Contents

1 Introduction 1

2 Related Work 2

2.1 Local Refinement Methods . 2

2.1.1 Local Registration Assuming Perfect Data 2

2.1.2 Iterative Closest Point . 2

2.1.3 ICP point-to-point and ICP point-to-surface 3

2.1.4 Colored Point Cloud Registration . 4

2.1.5 Beyond Local Refinement . 5

2.2 Coarse Alignment via Feature Matching . 5

2.2.1 Keypoint Extraction . 5

2.2.2 Feature Description . 6

2.2.3 Correspondences Estimation . 7

2.2.4 Correspondences Filtering . 7

2.2.5 Transformation Estimation . 8

2.3 Discussion and Conclusion . 8

3 Solution 9

3.1 Solution Overview . 9

3.2 Pipeline Architecture . 9

4 Experiment Settings 10

4.1 Data . 11

4.2 Metrics . 11

4.3 Parameter Tuning . 12

5 Results 12

5.1 Sitting Up Straight . 12

5.1.1 Test User 1 (Male) . 12

5.1.2 Test User 2 (Female) . 14

i

5.2 Holding Object . 15

5.3 Sitting Sideways . 17

6 Discussion 19

6.1 Result Analysis . 19

6.1.1 Effect of Keypoint Detectors . 19

6.1.2 Effect of Feature Descriptors . 20

6.1.3 Effect of ICP Algorithms . 20

6.1.4 Effect of Different Scenes . 20

6.1.5 Optimal Pipeline . 21

6.2 Issues and Challenges . 21

6.2.1 Building the Pipeline Architecture . 21

6.2.2 Image Preprocessing . 22

6.2.3 Parameter Tuning . 22

6.2.4 Metrics . 23

7 Conclusion 24

7.1 Summary of Contributions . 24

7.2 Possible improvements and Future Works . 24

Acknowledgement 25

References 26

Appendix A: Parameters of Keypoint Detectors 28

Appendix B: Parameters of Feature Descriptors 28

Appendix C: Parameters of ICP Algorithms 29

ii

1 Introduction

This project is one of the tracks of the “Telewindow” project by Interactive Media Arts at New York

University Shanghai. The purpose of “Telewindow” is to enhance teleconferencing experience by streaming

3D images constructed with 3D point clouds captured by a set of depth cameras and can be divided into

four tasks, namely 3D point registration, merging, rendering, and 3D data streaming. Therefore, the target

of our project is to find the optimal solution for the first task, 3D point cloud registration.

To be more specific, 3D point cloud registration deals with two or more point clouds of a certain object

or environment and tries to obtain the translation and rotation matrices that can map the clouds into a

common coordinate system such that the object or environment can be rebuilt in a three-dimensional space.

An example of 3D registration is given in Fig. 1. In general, the 3D point cloud registration problem can

be classified into two categories, non-rigid and rigid. The former deals with scenes that involve non-rigid

bodies and motions, such as water and animals. And the latter is only concerned with rigid bodies whose

deformation can be neglected. In our project, although we are dealing with scenes that involve human,

the point clouds we captured are always from same time frames, so there is no non-rigid motion or body

deformation. Thus, we only consider rigid point cloud registrations here.

A lot of researches have been done in this area, and most of them take the overall 3D registration

problem as a least-square minimization problem, which aligns the point clouds by minimizing the distance

between corresponding points [1]. This is done with two stages: coarse alignment and local refinement. In

the former process, an initial estimation of the cloud alignment is computed. And in the latter, this initial

estimation is refined iteratively until a certain criterion is reached [2]. Each stage contains multiple steps,

and we will give a review of each of them below.

Fig. 1: An example of 3D point cloud registration [3].

1

2 Related Work

As mentioned, 3D point cloud registration generally contains two stages, namely the coarse alignment

process and the local refinement process. In the area of 3D registration, the former process has much more

variants and different implementations, whereas the latter process is mostly based on the classic method as

it was introduced in [4]. Therefore, despite that the coarse alignment process precedes the local refinement

process in the registration pipeline, we are introducing local refinement first as it is fundamental for most

registration algorithms. Meanwhile, in terms of metrics, 3D registration methods are generally assessed

from three aspects, that is accuracy, robustness, and efficiency. Therefore, in the review below, we will

assess most of the methods based on such metrics.

2.1 Local Refinement Methods

2.1.1 Local Registration Assuming Perfect Data

As mentioned, rigid registration can be approached as a least-square minimization problem, by defining a

cost function that represents the current matching error between the point clouds [1]. In theory, this is a

linear least-square minimization problem and can be directly solved with Singular Value Decomposition

(SVD) on the premise that noise-free point cloud data and perfect point correspondence are available [5].

Nevertheless, neither of the two premises is reachable in the real world, and this is why an iterative method

comes in.

2.1.2 Iterative Closest Point

Today, most of the state-of-the-art implementations of registration methods employ an algorithm (or its

variants) called Iterative Closest Point Algorithm (ICP), introduced by Besl and McKay in 1992 [1] [4].

Given an initial estimation of point correspondence, the ICP algorithm iteratively refines the transformation

by running SVD for multiple times and removing outliers and redefining point correspondence along the

way [1]. At each iteration, the algorithm estimates new point correspondences based on the transformation

computed, and reject the correspondence pairs that are considered outliers. There are plenty of methods in

deciding whether a pair of correspondent points are outliers, and in practice, multiple of such correspon-

dence rejection methods are used together to determine whether a point correspondence pair should be kept

or rejected [6]. The step of correspondence filtering and rejection is also essential for the process of coarse

alignment, and thus we will give it more attention in the next section. Since the introduction of ICP, many

2

variants have been proposed, and each has their advantages under different circumstances, and here we

present them as below.

2.1.3 ICP point-to-point and ICP point-to-surface

Two widely used variants of ICP are ICP point-to-point [1] and ICP point-to-surface algorithms [7]. The

main difference between them is the way they define point correspondences. For instance, consider the case

of pairwise point cloud registration, the former, ICP point-to-point, simply search for point correspondences

between the source and target point clouds by finding the nearest neighbor based on the Euclidean distance.

And the latter consider a group of points around the candidate correspondent point in the target cloud and

find the point correspondence by aligning the point on the source point cloud to the surface normal n of that

group of points [1]. Fig. 2 and Fig. 3 give demonstrations for ICP point-to-point and ICP point-to-surface.

Fig. 2: A demonstration of ICP point-to-point [1].

Fig. 3: A demonstration of ICP point-to-surface [1].

3

The transformation T that both the ICP point-to-point and ICP point-to-surface define is composed

of a rotation R and a translation t. And the error metrics to be minimized in the two methods are listed

respectively below as (1) and (2), where (pk, qk) is the kth of the N correspondences from the source point

cloud to the target point cloud [6]:

Epoint−to−point(T) =
N∑
k=1

∥Tpk − qk∥22 (1)

Epoint−to−surface(T) =
N∑
k=1

(Tpk − qk) · nqk)2 (2)

These two algorithms have their advantages in different scenarios. In general, as the ICP point-to-surface

algorithm finds the correspondence points in a tangent plane formed by a group of candidate correspondent

key points, it is more robust against noises. To be more specific, the point-to-surface algorithm outperforms

the point-to-point algorithm when the source point cloud does not contain much noise while the target point

cloud is mostly smooth. On the other hand, the point-to-point algorithm performs better when the structures

are mostly quadratic or polynomial [1].

2.1.4 Colored Point Cloud Registration

In the modern context of 3D point cloud registration, the scenes that we are dealing with are usually

colored. Therefore, based on the traditional point cloud registration method such as ICP point-to-point

and ICP point-to-surface, there have been efforts that integrate color in these registration algorithms. One

common approach is to consider the color as additional parameters, which extends the original three-

dimensional definition of the points to a four- (if the colors are gray-scaled) or six-dimensional one(if the

colors are in RGB) [8] [9].

Apart from this common approach, J.Park et al. introduced a method [10] that, instead of parameterizing

the color information with the three-dimensional point coordinates, it approaches them separately. In

particular, this method defines the colored information as “photometric data”, and the spatial information

as “geometric data”, and develops an optimization objective for each of them. Then, the method defines a

joint optimization objective that integrates both the geometric term and the photometric term. J.Park et al.

claim that this method is more efficient and accurate than both the algorithms that do not take color into

account and the common colored registration algorithms that take color as mere additional parameters [10].

Table 2 below, summarized from [10], is a comparison between the performance of J.Park et al.’s Colored

4

Point Cloud Registration, other common colored registration, and non-colored registration.

Methods Accuracy Robustness Efficiency
ICP point-to-point Low Low High
ICP point-to-Surface Medium Medium Medium

Color 4D ICP Medium Low Medium
Color 6D ICP Medium Low Medium

J.Park et al’s Colored ICP High Medium High

TABLE 1: Performance comparison between ICP algorithms.

2.1.5 Beyond Local Refinement

The accuracy and efficiency of the local refinement algorithms as described above rely heavily on the

quality of pre-alignment [1]. Without a good pre-alignment, the local refinement algorithms take a longer

time to converge and it is easy for them to end up in a local minimum of the cost function and thus yield bad

results. Therefore, modern pre-alignment, or “Coarse alignment”, provides a pipeline to enhance robustness

and efficiency of the ICP algorithms, and we are giving it a review below.

2.2 Coarse Alignment via Feature Matching

Due to the non-convexity of the problem and the local iterative procedure it adopts, ICP requires a reliable

initial alignment to avoid the problem of local minima. Typical solutions to this problem adopt a feature-

based coarse initial alignment. A set of keypoints are firstly extracted from the input clouds. For each point,

a compact vector representation is computed, which is referred to as a feature. Point correspondences are

estimated via feature matching, followed by subsequent filtering of outliers. Finally, a coarse transformation

is estimated based on the correspondences, which can be further refined by ICP [6]. A number of different

approaches have been proposed for each stage, which we will now review.

2.2.1 Keypoint Extraction

A keypoint is simply a point that is identified as relevant for a given task, like registration, object recognition

etc. It usually has some special properties that distinguish itself from other points, for example, locating

right on the corner of a surface. Keypoint extraction reduces the number of points used for computation.

An ideal keypoint detector should also be repeatable with respect to rigid transformation and noise. A

great number of 3D keypoint detectors have been proposed, like NARF [11], 3D-SIFT [12], ISS [13],

5

and FAST [14], to name only a few of the available methods. Some proposals include both a keypoint

detector and a companion keypoint feature descriptor, like NARF. However, detectors and descriptors from

different proposals can be used in a mixed way, which may even result in a better performance than the

original pair [15]. Hansch et al. compared NARF and 3D-SIFT and reported that NARF computes faster

but produces fewer keypoints and worse registration results than 3D-SIFT [16]. Besides explicit extraction

of keypoints, one may alternatively only use sampling-based methods, e.g., using all available points

[4], uniform downsampling [17], or random sampling [18]. While relying on specific keypoint detection

schemes improves the repeatability and robustness of the registration against noise [6], there is evidence that

this may also hurt the accuracy by a too strong reduction of available points, especially in the multi-view

registration case which involves more than two point clouds [16].

2.2.2 Feature Description

A feature is a compact vector representation of a point’s local neighborhood. Points in different clouds

with a similar feature are likely to represent the same surface point. A good feature descriptor should be

robust against noise, invariant against rigid transformation, fast to compute, and fast to compare [19]. As

is the case of keypoints, there are a huge number of feature descriptors available. They can be based on

only geometric characteristics (e.g. PFH [20] , SHOT [21], 3DSC [22]), or if available, also incorporates

photometric characteristics (e.g., PFH-RGB [23], Color-SHOT [24]). It is generally hard to separate the

performance of feature descriptor from that of the overall pipeline. Nevertheless, in terms of accuracy on

the registration task, SHOT is reported to outperform a number of other methods including KPQ [25],

MeshHoG [26], etc., and the pair of ISS as keypoint detector and 3DSC as feature descriptor yields

the best result [15]. Hansch et al. suggests that the PFH family are faster to compute and more robust

against viewpoint differences than the SHOT family [16]. In particular, FPFH [27], a faster variant of PFH,

computes faster while achieving similar accuracy as PFH [16].

Recently, deep learning methods have been studied for feature extraction. In the field of 2D computer

vision, deep learning methods, especially convolutional neural networks (CNNs), have shown superiority

over hand-coded feature descriptors in extracting more advanced features [28]. Yang et al. adopted 2D

convolutional neural networks to extract features for image registration and outperforms the method using

SIFT keypoint extractor and feature descriptor [29]. When it comes to 3D point cloud data, although there

are several attempts applying deep learning for feature extraction [30] [31], they are originally proposed

6

for the task of object recognition and the utility of them for the task of 3D point cloud registration has

remained mostly elusive.

Methods Incorporate Color Information Running Speed
SHOT No Slow

Color-SHOT Yes Very slow
PFH No Fast
FPFH No Very fast

PFHRGB Yes Medium
3DSC No Very slow

TABLE 2: A summary of selected 3D point cloud feature descriptors.

2.2.3 Correspondences Estimation

A number of approximation methods exist for finding the ideal correspondences between different clouds.

Typically, it is done by nearest neighbor search in the feature space. A point in the source cloud is paired to

their nearest neighbor in the target cloud. The brute-force algorithm is too computationally expensive for

real applications with a massive number of points as it takes a linear search time for each point. Various

data structures for rapid searches have been proposed, and k-d tree [32] is the most well-known. While very

effective in low dimensional spaces, its performance degrades dramatically with increased dimensions [33].

To further improve upon search efficiency, a number of fast approximation algorithms have been proposed,

and priority search k-means tree [34] and multiple randomized k-d trees [35] are among the most efficient

ones. They provide significant speedups with minor loss of accuracy [34].

2.2.4 Correspondences Filtering

As mentioned, in the local refinement process, the algorithms like ICP takes a correspondence filtering

step in each iteration. This is also an important step in the coarse alignment process, through which

it roughly filters mismatches in the initial estimation. This step, whether it is in the coarse alignment

process or in the refinement process, takes the same set of filtering methods, including filtering based on

distances (exclude pairs with distance exceeding the mean distance or a arbitrary threshold), target matching

(exclude duplicated target matches), normal compatibility (exclude pairs with large inconsistent surface

normals), and surface boundaries (exclude pairs on surface boundaries). Meanwhile, there is a relatively

more advanced randomized technique called RANSAC [36]. This method randomly choose a subset of the

point and then filter them based on distance. Then, by iterations, each time a different subset of the points is

7

selected, and the correspondence pairs got filtered becomes different. In this way, it progressively edits the

correspondence selection, and it helps to keep the overall registration from ending up in a local minimum

since it filters invalid correspondent point randomly and dynamically. The methods above, when applied,

are not separated from one another. In general, they are used together to obtain better filtering results.

Methods Filtering condition
Based on Distance whether the point pair distance exceeds a given threshold

Based on Median Distance whether the point pair distance exceeds the distance median
Based on Duplication filter out the duplicated correspondent points in the source cloud
Based on RANSAC randomly choose a subset of the points and filter based on distance

Based on Normal Compatibility whether point pairs have consistent surface normals
Based on Surface Boundaries when two surfaces overlap, filter surface boundary points

TABLE 3: Correspondence Filtering Methods.

2.2.5 Transformation Estimation

Finally, the same type of transformation estimation used in one single iteration of the ICP methods can

be done based on the estimated correspondences. This can produce a coarse alignment which can then be

iteratively refined.

2.3 Discussion and Conclusion

In summary, 3D point cloud registration is a very comprehensive area containing multiple steps and choices

of algorithms, and here we provide our insights of these algorithms specific to their potential application to

“Telewindow”.

First, for coarse registration, the algorithms are not separated from each other. Under a general pipeline,

they are combined and used in a mixed way. In the meantime, the performance of them is highly dependent

on the scenes captured. Considering the setting of “Telewindow”, it introduces a relatively new application

in terms of real-time conferencing, with almost static positioning of cameras, relatively closer object-to-

camera distance, as well as the requirement of being real-time. Thus, the optimal registration pipeline of

3D point clouds for “Telewindow” can be very different from the ones used in common cases. As a result,

broad combinations of the algorithms should be explored in our experiment. Therefore, our experiment

with coarse registration will cover nearly all the possible combinations of the algorithms as listed above.

We will not experiment with PFH, KPQ or MeshDoG for feature description, as they are shown inferior to

the other methods in [16] [15].

8

Second, for local refinement methods, we will take a different approach. Instead of experimenting with

multiple combinations of algorithms, we only need to identify the one that performs the best. The reason is

that the ICP algorithms are relatively independent, the sole result it relies on is the transformation matrices

computed by the coarse registration process. Among the ICP algorithms that we reviewed above, we will

experiment with ICP point-to-point, ICP point-to-plane, and J.Park et al.’s Colored ICP [10], as they are

more promising than the others in terms of accuracy and efficiency.

In conclusion, the goal of our project is to figure out the optimal registration pipeline for “Telewindow”

by experimenting and tuning different combinations of the state-of-art methods in each of the registration

steps under the unique project setting of “Telewindow”. The details of the construction of such a pipeline

will be presented in the next section.

3 Solution

3.1 Solution Overview

In general, we build an experimental pipeline that ensembles multiple registration stages together. At

each of the stages, we implement several potential candidate algorithms as discussed in our literature

review. Consequently, our experimental pipeline can provide us with several different combinations of the

algorithms from each registration stage, thus facilitating our experiments.

The inputs of our pipeline are two or more point clouds of one object captured in the same time

frame. The pipeline selects one of the point clouds as the target point cloud, and the rest as source point

clouds. Then, for each of the source point clouds, each algorithm combination computes a transformation

matrix that maps it to the target point cloud. Therefore, suppose our pipeline provides M combinations of

registration algorithms and is input with N point clouds, the output of the pipeline will be M ∗ (N − 1)

transformation matrices.

3.2 Pipeline Architecture

Fig. 4 below shows the architecture of this experimental pipeline that we build, which contains four

major stages, including preprocessing, keypoint and feature computation, correspondence matching, and

refinement using ICPs. The former three stages are implemented using the PCL library, and the refinement

stage is implemented using Open3D.

9

Fig. 4: The experimental pipeline.

For key point detection and feature computation, we are trying to explore as many combinations as

possible, since multiple papers have reported that each of the algorithms can triumph in different specific

scenarios, and it is hard to determine to which scenario Telewindow’s data belong. For correspondence

matching and final refinement, however, the performance depends more on the quality of coarse refinement

than on the scenes itself and is thus more stable across different applications. Therefore, we select only the

most common and popular ones for our experiments.

4 Experiment Settings

The experiment is conducted on three common scenes that can occur in teleconferencing to test our

algorithms. In the first scene, we have the testers sitting straight. Hypothetically, this should be the most

ideal case that has the highest potential to yield the best results. For this scene, we test on both male and

female testers to see whether our algorithms are stable across different people with different faces and

figures. After the first scene, we start to add potential noise to our data. In the second scene, we have the

tester hold a bottle, and in the third scene, the tester sits sideways. The initial point clouds of these three

scenes will be presented in section 5 along with the registered point clouds. We use the same pipeline

configuration for all the scenes and generate the results for each algorithm combination.

10

4.1 Data

The testing point cloud data are captured by the four Intel® RealSense™ Depth Camera D415s on the

experimental platform of the “Telewindow” project. The four cameras are installed at the top, left, right and

bottom of the display screens. The cameras have several built-in filters and we enable all of them as this

yields the best result. We also filter all the points whose depths are more than 1.5 m to remove the noisy

background.

Fig. 5: Experimental platform of “Telewindow”. Fig. 6: Example of unregistered point clouds.

4.2 Metrics

We evaluate our registration pipeline from two perspectives, running speed and accuracy. We run the same

pipeline for 10 times and take the mean running time as a measure for running speed. Due to the lack of

ground truth registration results, we cannot directly compare our results with the ground truth. We use the

Root Mean Squared Correspondence Error (RMSCE) and the Maximum Correspondence Error (MCE) to

objectively measure the accuracy of the registration results. They represent the mean and the maximum

matching error in terms of aligning the registered source clouds to the target cloud. Formally, let C denote

a list of N 3D point clouds that we want to register. We use Ci to represent the i-th point cloud of the

list and Mi is the number of points in Ci. We use pij to denote the 3D homogeneous coordinate of the

j-th point in the i-th point cloud. For each point cloud Ci, we estimate the transformation Ti to align Ci

with C1, the target cloud. Let NNC1(p) denote the nearest neighbor point of p in C1 computed with the

Euclidean distance function. The Root Mean Squared Correspondence Error (RMSCE) and the Maximum

11

Correspondence Error (MCE) for C are computed as follows:

RMSCEC =

√√√√ 1∑N
i=2 Mi

N∑
i=2

Mi∑
j=1

∥∥Tipij −NNC1(Tipij)
∥∥2

2
(3)

MCEC = max
2≤i≤N,1≤j≤Mi

∥∥Tipij −NNC1(Tipij)
∥∥
2
. (4)

We run the same pipeline for 10 times and report the mean error score.

4.3 Parameter Tuning

We tune the parameters of the algorithms used in each stage beforehand. Downsampling is performed with

a uniform 3D grid size of 1 cm. For each point in the cloud, its surface normal and feature descriptor

are estimated using all neighbor points in a sphere of radius 2 cm. Correspondence estimation is carried

out in a reciprocal manner (searches for correspondences from cloud A to cloud B as well as from B to

A and only use the intersection). The RANSAC correspondence filter takes a maximum iteration of 1000

and a maximum correspondence points-pair distance of 3 cm. For more details on the configuration of the

keypoint detectors, feature descriptors, and ICP refinement algorithms, see Appendix A, B and C.

5 Results

In this section, we provide a detailed description of our experimental results for each scene that we

mentioned in section 4. For each scene, we report the coarse registration results in tables. The top 3

algorithms in terms of lowest RMSCE (shaded in light grey) are picked for testing different ICP algorithms

upon the coarse alignment transformations computed by them. We then report the ICP registration results

in tables and visually present the initial point clouds and the registered point clouds of lowest RMSCE. The

tables of registration results are sorted in the ascending order according to firstly RMSCE, then time and

lastly MCE. The lowest values in each column of the table are marked with red.

5.1 Sitting Up Straight

We test on two users, one male, and one female, sitting up straight towards the cameras.

5.1.1 Test User 1 (Male)

In Table 4, we list the coarse registration results for test user 1 sitting up straight. It is clear from the

table that for keypoint detectors, Use All Points outperforms SIFT, NARF, and ISS in terms of registration

12

accuracy at the cost of slower running speed. For feature descriptors, SHOT, FPFH, and PFH-RGB are

among the best three in terms of registration accuracy, reaching an RMSCE of about 2.5 cm. SHOT

performs slightly better than the other two in accuracy but is significantly slower than them, especially

FPFH.

In Table 5, we list the ICP registration results. All the algorithm combinations perform similarly in terms

of registration accuracy, reaching an RMSCE of about 1.5 cm, but color-ICP is slightly better. Point-to-

plane ICP is slightly faster than color-ICP and point-to-point ICP, but overall, the time for ICP refinement

is negligible compared to the time for coarse alignment.

Algorithms Time (s) RMSCE (m) MCE (m)
All Points+SHOT 42.3949 0.0240 0.2858
All Points+FPFH 8.5297 0.0244 0.3065

All Points+PFHRGB 11.045 0.0272 0.3405
SIFT+FPFH 6.3637 0.0359 0.2974

SIFT+PFHRGB 6.2544 0.0471 0.385
ISS+PFHRGB 4.4588 0.0561 0.2993

All Points+3DSC 262.2276 0.0577 0.418
All Points+SHOTColor 227.2644 0.0589 0.3249
SIFT+SHOTColor 8.9224 0.0697 0.4362
ISS+SHOTColor 4.4091 0.0703 0.3144

ISS+SHOT 4.3602 0.0707 0.3641
ISS+FPFH 4.4822 0.0759 0.3879
SIFT+SHOT 6.8108 0.0875 0.3291
SIFT+3DSC 10.0681 0.1031 0.3843

NARF+SHOTColor 3.4788 0.1239 0.4203
NARF+SHOT 3.4844 0.1239 0.4203

NARF+PFHRGB 3.4891 0.1239 0.4203
NARF+FPFH 3.4934 0.1239 0.4203
NARF+3DSC 3.5209 0.1239 0.4203
ISS+3DSC 4.3523 0.1239 0.4203

TABLE 4: Coarse registration results for test user 1 sitting up straight.

13

Algorithms ICP time Total time ICP RMSCE ICP MCE

All Points+FPFH+color-ICP 0.3838952 8.7973752 0.0150694 0.277851

All Points+PFHRGB+color-ICP 0.3855574 11.1381574 0.0150694 0.277851

All Points+SHOT+color-ICP 0.3838651 42.2366651 0.0150694 0.277851

All Points+FPFH+point-to-point 0.3539190 8.6842290 0.0150694 0.277851

All Points+PFHRGB+point-to-point 0.3520682 11.0670682 0.0151460 0.283751

All Points+FPFH+point-to-plane 0.1733897 8.4972697 0.0155357 0.284039

All Points+PFHRGB+point-to-plane 0.172739 10.8989390 0.0155357 0.284039

All Points+SHOT+point-to-plane 0.1716471 42.1088471 0.0155388 0.284038

All Points+SHOT+point-to-point 0.4255302 42.4977302 0.0156969 0.282453

TABLE 5: ICP registration results for test user 1 sitting up straight.

Fig. 7: Registration results for test user 1 sitting up straight using All Points+FPFH+color-ICP. Left: initial
point clouds; Middle: after coarse registration; Right: after ICP registration.

5.1.2 Test User 2 (Female)

In Table 6 and 7, we list the coarse and ICP registration results for test user 2 sitting up straight. The list

of top algorithms in terms of accuracy is similar to that for test user 1. However, the ICP algorithms only

improve the coarse alignment slightly, and the ICP registration results are worse than for test user 1.

Fig. 8: Registration results for test user 2 sitting up straight using All Points+FPFH+point-to-point. Left:
initial point clouds; Middle: after coarse registration; Right: after ICP registration.

14

Algorithms Time (s) RMSCE (m) MCE (m)
All Points+FPFH 6.5532 0.0253 0.4593

All Points+SHOTColor 95.2939 0.0295 0.4849
All Points+PFHRGB 7.8707 0.0325 0.4769
All Points+SHOT 21.4263 0.0339 0.1976
SIFT+FPFH 5.1938 0.0458 0.4550
ISS+PFHRGB 3.9790 0.0545 0.2180

SIFT+SHOTColor 6.3588 0.0586 0.2390
ISS+SHOTColor 3.9631 0.0648 0.2282
SIFT+PFHRGB 5.1448 0.0651 0.4783
SIFT+SHOT 5.4594 0.0722 0.2646
ISS+SHOT 3.9235 0.0775 0.2765

All Points+3DSC 113.8454 0.0777 0.4517
ISS+FPFH 4.0968 0.0810 0.2442
SIFT+3DSC 6.7184 0.0829 0.2719
NARF+3DSC 3.3331 0.1084 0.4276

NARF+PFHRGB 3.3808 0.1084 0.4276
NARF+SHOT 3.4350 0.1084 0.4276

NARF+SHOTColor 3.4782 0.1084 0.4276
NARF+FPFH 3.4922 0.1084 0.4276
ISS+3DSC 3.8989 0.1084 0.4276

TABLE 6: Coarse registration results for test user 2 sitting up straight.

Algorithms ICP time (s) Total time (s) ICP RMSCE (m) ICP MCE (m)
All Points+FPFH+point-to-point 0.2657542 6.9294542 0.0241943 0.451891
All Points+FPFH+color-ICP 0.2293787 6.5925787 0.0252828 0.166874

All Points+FPFH+point-to-plane 0.1758761 6.6765461 0.0275143 0.450531
All Points+PFHRGB+point-to-point 0.2359052 8.2850152 0.0278369 0.468062
All Points+SHOTColor+point-to-point 0.2359350 95.3924350 0.0279272 0.462050
All Points+SHOTColor+color-ICP 0.2037940 97.0842940 0.0281132 0.473025
All Points+PFHRGB+color-ICP 0.2123878 8.4493578 0.0281810 0.472483

All Points+PFHRGB+point-to-plane 0.1389971 8.0945771 0.0283307 0.464510
All Points+SHOTColor+point-to-plane 0.1065028 96.4375028 0.0283822 0.455710

TABLE 7: ICP registration results for test user 2 sitting up straight.

5.2 Holding Object

In Table 8, we list the coarse registration results for test user 1 holding an object. For keypoint detectors,

Use All Points still generally outperforms SIFT, NARF, and ISS in terms of registration accuracy but ISS

works pretty good when paired with PFH-RGB. For feature descriptors, there is no obvious winner and the

same descriptor paired with different keypoint detector can lead to very different results.

In Table 9, we list the ICP registration results. All the algorithm combinations perform similarly in

15

terms of registration accuracy, reaching an RMSCE of about 8.8 cm. The ICP refined alignments do not

improve much upon the coarse alignments.

Algorithms Time (s) RMSCE (m) MCE (m)
All Points+3DSC 288.2582 0.0842 0.3958
ISS+PFHRGB 4.4138 0.0960 0.4080

All Points+SHOT 45.5421 0.0965 0.3570
SIFT+3DSC 10.2706 0.1026 0.3970

All Points+FPFH 8.4364 0.1030 0.4368
All Points+PFHRGB 11.1968 0.1075 0.4472
SIFT+PFHRGB 6.3519 0.1077 0.4427
SIFT+SHOTColor 9.1327 0.1101 0.3905

All Points+SHOTColor 239.9269 0.1124 0.4005
ISS+FPFH 4.4942 0.1127 0.4347
SIFT+FPFH 6.3545 0.1176 0.3629
SIFT+SHOT 6.8911 0.1333 0.3857
ISS+SHOT 4.3883 0.1370 0.3716

ISS+SHOTColor 4.4232 0.1464 0.5000
NARF+SHOT 3.4897 0.1478 0.4270
NARF+3DSC 3.5411 0.1478 0.4270

NARF+SHOTColor 3.5613 0.1478 0.4270
NARF+FPFH 3.6059 0.1478 0.4270

NARF+PFHRGB 3.6358 0.1478 0.4270
ISS+3DSC 4.3986 0.1478 0.4270

TABLE 8: Coarse registration results for test user 1 holding an object.

Algorithms ICP time Total time ICP RMSCE ICP MCE
All Points+SHOT+color-ICP 0.3613048 45.4901048 0.0878607 0.348174

All Points+3DSC+point-to-point 0.4449792 286.8779792 0.0880570 0.373715
All Points+3DSC+color-ICP 0.3197620 284.3807620 0.0884108 0.348174

All Points+SHOT+point-to-plane 0.2574489 45.3856489 0.0889373 0.351296
ISS+PFHRGB+point-to-point 0.2994981 4.7011881 0.0891415 0.351056
ISS+PFHRGB+point-to-plane 0.2603290 4.6380190 0.0891687 0.351296

All Points+3DSC+point-to-plane 0.2828851 284.8028851 0.0893555 0.351276
All Points+SHOT+point-to-point 0.3452160 45.5648160 0.0893731 0.351056

ISS+PFHRGB+color-ICP 0.3584950 4.7095750 0.0895911 0.348174

TABLE 9: ICP registration results for test user 1 holding an object.

16

Fig. 9: Registration results for test user 1 holding an object using All Points+SHOT+color-ICP. Left: initial
point clouds; Middle: after coarse registration; Right: after ICP registration.

5.3 Sitting Sideways

In Table 10, we list the coarse registration results for test user 1 sitting sideways. The coarse registration

results are worse than those of the sitting up straight scene but are comparable to those of the holding object

scene. In terms of registration accuracy, Use All Points outperforms SIFT, NARF, and ISS for keypoint

detection; PFH-RGB and Color-SHOT, the two descriptors that incorporate color information, outperform

all the other descriptors.

In Table 11, we list the ICP registration results. All the algorithm combinations perform similarly in

terms of registration accuracy, reaching an RMSCE of about 8.5 cm. Also, it is worth noting that the ICP

refined alignments do not improve upon the coarse alignments.

Fig. 10: Registration results for test user 1 sitting sideways using All Points+PFHRGB+point-to-point. Left:
initial point clouds; Middle: after coarse registration; Right: after ICP registration.

17

Algorithms Time (s) RMSCE (m) MCE (m)
All Points+PFHRGB 9.9959 0.0753 0.4303
All Points+SHOTColor 196.8858 0.0800 0.4269

All Points+3DSC 269.6997 0.0873 0.3457
SIFT+PFHRGB 6.0237 0.0876 0.3070
All Points+SHOT 38.5081 0.0886 0.4144
All Points+FPFH 7.7910 0.1007 0.3702
SIFT+FPFH 5.9326 0.1041 0.4621
SIFT+3DSC 8.9177 0.1128 0.4038
ISS+SHOT 4.2407 0.1129 0.3780

SIFT+SHOTColor 8.2242 0.1140 0.4868
ISS+PFHRGB 4.2388 0.1229 0.3898
SIFT+SHOT 6.3399 0.1328 0.4718

ISS+SHOTColor 4.2871 0.1529 0.5000
ISS+FPFH 4.2954 0.1652 0.5000

NARF+3DSC 3.3400 0.1959 0.5000
NARF+SHOTColor 3.3641 0.1959 0.5000

NARF+SHOT 3.3656 0.1959 0.5000
NARF+PFHRGB 3.4277 0.1959 0.5000
NARF+FPFH 3.4669 0.1959 0.5000
ISS+3DSC 4.1301 0.1959 0.5000

TABLE 10: Coarse registration results for test user 1 sitting sideways.

Algorithms ICP time Total time ICP RMSCE ICP MCE

All Points+PFHRGB+point-to-point 0.3405781 10.3644781 0.0773697 0.444735

All Points+PFHRGB+color-ICP 0.3305154 10.3074454 0.0841944 0.444831

All Points+SHOTColor+color-ICP 0.3319890 194.8319890 0.0841944 0.444831

All Points+3DSC+color-ICP 0.3312569 224.9312569 0.0841944 0.444831

All Points+SHOTColor+point-to-point 0.2810199 194.9990199 0.0887514 0.444631

All Points+3DSC+point-to-point 0.2796409 224.6506409 0.0887514 0.444631

All Points+PFHRGB+point-to-plane 0.2069662 10.5309662 0.0907480 0.446678

All Points+SHOTColor+point-to-plane 0.1569500 195.0429500 0.0907525 0.446686

All Points+3DSC+point-to-plane 0.1576631 225.6326631 0.0907525 0.446686

TABLE 11: ICP registration results for test user 1 sitting sideways.

18

6 Discussion

6.1 Result Analysis

6.1.1 Effect of Keypoint Detectors

In all three scenes, using all points as keypoints outperforms the explicit keypoint detection algorithms 3D-

SIFT, NARF, and ISS in terms of registration accuracy. This suggests that the explicit keypoint detectors

fail to detect highly distinctive keypoints under the ”Telewindow” project setting and further hurt the coarse

registration accuracy by reducing the number of keypoints for correspondence matching. In Fig. 11, we

plot the average number of detected keypoints and the average RMSCE/MCE of coarse registration using

different keypoint detectors. It is clear that when the number of detected keypoints reduces, the RMSCE

increases. This suggests that either we need a more powerful keypoint detector that is capable to detect

highly distinctive keypoints, or we should just use all points from the downsampled clouds as keypoints.

The human facial keypoint detectors used for facial recognition might be helpful.

Fig. 11: Average number of detected keypoints and the average RMSCE/MCE of coarse registration using
different keypoint detectors. Top-left: Test user 1 sitting up straight; Top-right: Test user 2 sitting up straight;
Bottom-left: Test user 1 holding object; Bottom-right: Test user 1 sitting sideways.

19

6.1.2 Effect of Feature Descriptors

There is no dominating feature descriptor in our experiments. In terms of coarse registration accuracy,

FPFH, PFHRGB and SHOT are the best three. However, SHOT is much slower than the other two, as

it computes a much higher-dimensional feature vector for each keypoint (see Appendix B). Although our

point clouds are colored, the two feature descriptors incorporating color information, PFH-RGB, and Color-

SHOT, do not show superiority over the others except for the sitting sideways scene. [15] reports that ISS

+ 3DSC computes the most accurate registration results among the combinations they tested, but in our

experiments, this pair produces the worst registration results.

6.1.3 Effect of ICP Algorithms

J.Park et al. [10] claims that the color-ICP they proposed produces more accurate registration results and

runs faster than point-to-point and point-to-plane ICP. This is not supported by our experiments though.

The three tested ICP algorithms produce similar registration results in all scenes, but color-ICP is slightly

better. Point-to-plane ICP runs faster than point-to-point ICP and color-ICP. However, all of them can finish

running within 1 s, much faster than the coarse registration algorithms. Therefore, in practice, we think

color-ICP is the optimal one to use for refinement.

6.1.4 Effect of Different Scenes

Our registration pipeline works best when the test user is sitting up straight. Holding objects or sitting

sideways worsens the registration results. When the test user sits sideways towards one side, part of

him/her body will be blocked from the other side’s depth camera. This will potentially hurt the registration

results. We do not know why holding a bottle would worsen the registration results. A potential explanation

is that both the shape and the color of the bottle are similar to that of the test user’s arm, which confuses

the algorithms. Also, our registration pipeline produces less accurate alignment for test user 2 sitting up

straight than for test user 1. In Table 12, it is clear that the point clouds of test user 2 have much fewer

points. Since we observe a positive correlation between the number of points and registration accuracy in

section 6.1.1, this might account for the worsened result. However, we are not knowledgeable about why

the point clouds of test user 2 have fewer points.

20

Point Cloud Test User 1 Test User 2
1 7283 4750
2 5711 3721
3 2477 1568
4 4531 2592

TABLE 12: The number of points in each of the 4 point clouds of Test User 1 and 2.

6.1.5 Optimal Pipeline

Based on the previous analysis, we identify the optimal algorithm combinations under the “Telewindow”

project setting, shown in Table 13.

Stages Optimal Algorithm
Keypoint Detection Use All Points
Feature Description FPFH/PFH-RGB
ICP Refinement color-ICP

TABLE 13: Optimal registration pipeline.

6.2 Issues and Challenges

During the development of the project, we encountered several issues and key challenges. For some of

them, we were able to find a solution, and for the rest, we found alternative approaches. We list these

challenges below and discuss the decisions we made when attempting to solve them.

6.2.1 Building the Pipeline Architecture

Constructing the pipeline architecture of the project is fundamental to our project, and was also the first

challenge we encounter.

Firstly, since our pipeline is relatively complicated, it was hard to build it from scratch. Therefore, we

found and forked an open-sourced third-party implementation of a registration pipeline from GitHub (see

Acknowledgement). This pipeline was not able to be run properly because it was implemented based on an

obsolete version of the Point Cloud Library and does not include some of the algorithms that we wanted to

experiment with. However, it provides us an idea of how a registration pipeline is implemented so that we

could proceed by rebuilding and extending their implementation.

Secondly, our pipeline encompasses so many stages and algorithms that no single library is able to

provide support for all of them. Therefore, we implemented the pipeline with two libraries. On the one hand,

21

for the implementation of coarse registration, we need to construct various combinations of algorithms.

Therefore, we implemented it with the Point Cloud Library, which does not include some state of the art

algorithms but provides an almost exhaustive list of the coarse registration algorithms that we need. On

the other hand, for the implementation of local refinement, we aimed for better performance and efficiency

of the algorithms as we only need to experiment with three different ICP algorithms. Therefore, we used

Open3D, which is more advanced, as several newest versions of ICP were actually published by the authors

of Open3D.

6.2.2 Image Preprocessing

It was an unexpected fact for us that how much impact image preprocessing has on the accuracy and

performance of our pipeline. Initially, we fed our pipeline with the raw point cloud data captured by the

cameras, which includes both the user and the background. We hoped that including more data could

allow the feature detectors to detect more meaningful feature points. However, the fact that the background

is messy and changes over time actually create more noises that creating more meaning for features.

Therefore, we decided to eliminate backgrounds and register only based on human figures.

After eliminating the background, we assumed that our algorithm should become more efficient since

there are fewer points to process. However, in the beginning, the time that it took to process our data stayed

the same. We identified the problem by investigating the structure of our point cloud, and it turned out that

it kept all the points that we eliminated as empty points with a zero coordinate and were still computed

by our pipeline. After filtering the points with zero coordinates, the speed of our algorithms improved

significantly.

6.2.3 Parameter Tuning

Finding the best parameters of our algorithms played an important role in our project. Initially, we mostly

adopted the suggested parameters offered by the two libraries, but the result was that the algorithms either

end up with an error or performs badly. After that, we discovered that the suggested parameters by the

libraries all assumed a much higher camera resolution than the ones Telewindow uses. For instance, one

key parameter was ”search radius”, which is used by almost all coarse registration algorithms for computing

point features. Since the cameras that we used have a lower resolution, in other words, have a larger distance

between the points, searching with the suggested radius often lead to inaccurate point features. To solve

this problem, we investigated the hardware configuration of our cameras and tuned the parameters to it

22

such that our algorithms could return meaningful results. For an exhaustive list of the tuned parameters,

please see the appendices.

6.2.4 Metrics

As mentioned in section 4.2, we calculated the matching errors between the registered source point clouds

and the target point clouds as our metrics. In fact, this was not the original plan. Initially, we attempted

to obtain the ground truth for the transformation matrices with a checkerboard (a.k.a a calibration board).

A checkerboard provides a camera with extra significant features (see Fig. 12) such that, theoretically the

algorithm can obtain the ground truth.

However, feeding images that involve a checkerboard directly to our pipeline does not yield the perfect

results as we expected. In fact, our further investigations indicate that we need to adopt extra algorithms

from the OpenCV library to actually obtain a ground truth with a checkerboard. We considered doing this

out of the scope of our project.

As a result, we had to find an alternative approach, which is the one we described in section 4.2. It

was actually inspired by how the ICP method provided by Open3D computes its internal error. Therefore,

we adopted this idea and implemented a program computing the metrics for both the coarse registration

process and the local refinement process.

Fig. 12: A checker board and its features identified.

23

7 Conclusion

In conclusion, this project proposes an algorithm combination (Use All Points for keypoint detection,

FPFH/PFH-RGB for feature description, color-ICP for refinement) for 3D registration that is both efficient

and accurate given clean point clouds of a human figure (i.e. with the user sitting straight up without

holding any extra object). Here, we conclude this report by summarizing our contributions and state some

possible improvements and future works.

7.1 Summary of Contributions

• Reviewed multiple highlighted algorithms for 3D registration and selected the most potential ones

for experiments.

• Built an experimental pipeline for the 3D point cloud registration under the “Telewindow” project

setting by rebuilding and extending an open source pipeline that we forked.

• Tuned each of the algorithms at different stages of our pipeline by investigating the specific point

cloud data captured and the hardware configuration of ”Telewindow”.

• Conducted experiments under different scenes with different test users and analyzed the result for

each test cases.

• Identified some promising pipelines that are able to finish the registration within 10 seconds and

yield accurate registration results given clean enough point cloud data.

7.2 Possible improvements and Future Works

Although our proposed algorithm combinations yield satisfactory results given clean point clouds, there is

still much room for improvement.

Currently, the performance of our solution relies heavily on the data given. However, our pipeline

should still be feasible for “Telewindow” as we can require a user to sit straight-up at the start-up phase

of the “Telewindow” software. However, this is not user-friendly enough and denies the possibility of

validating the registration by running the algorithm periodically during teleconferencing.

Moreover, it is still possible to improve the performance of our algorithms. As mentioned, some papers

have pointed out that the combination of the ISS keypoint detector and the 3DSC feature descriptor should

have a very good performance. However, in our experiments, it was entirely the opposite. Therefore,

it is possible that we have not tuned the parameters for these two algorithms to the best. Meanwhile,

24

for correspondence filters, we are currently using RANSAC, which is arguably the most powerful one

as suggested by our literature review. However, some papers also point out that stacking it with other

correspondence filters might work even better. Due to the time limit, we did not include this in our

experiments.

In terms of the positive correlation between the number of points and registration accuracy as we

mentioned previously in section 6.1.1, there is a potential solution that we did not experiment. We can

actually add point clouds captured from consecutive frames together to create more points, which might

help the coarse registration to have a better performance.

Last but not least, despite the fact that we gave up on obtaining ground truth with a checkerboard as

the work required for this lies outside of the registration algorithms that we have reviewed, we still think

it is a very promising approach. It not only provides a potentially better way to computing errors for our

pipeline but also yields a nearly perfect alignment (but would require regular calibration).

With the above being said, we list some possible future works on this project as the following:

• Continue to tune the parameters for some currently unsatisfactory, but theoretically potential

algorithms.

• Experiment with stacking correspondence filters.

• Experiment with adding point clouds from multiple consecutive frames to provide more data

samples for feature detectors.

• Use a checker/calibration board to obtain accurate registration results that can be hard-coded into

the machine. This will yield nearly perfect alignment yet requiring regular calibration.

• Incorporate human facial keypoint detectors to obtain highly distinctive keypoints for registration

such that the algorithm can be more robust against noises.

Acknowledgement

We would like to thank Prof. Olivier Marin, Prof. Michael Naimark, Cameron Ballard and Bruce Luo for

their professional advice and assistance. We also thank the author of the pipeline we forked, Tiancheng

Xu from the University of Rochester. Our sincere thanks also go to Wenqian Hu for participating in our

experiments. Finally, this study would not have been made possible without the support from New York

University Shanghai. We acknowledge all the NYUSH staff and faculty members working on the CS Senior

Project class.

25

https://github.com/horizon-research/PointCloud-pipeline

References

[1] B. Bellekens, V. Spruyt, R. Berkvens, and M. Weyn, “A survey of rigid 3d pointcloud registration algorithms,” in AMBIENT 2014: the

Fourth International Conference on Ambient Computing, Applications, Services and Technologies, Rome, Italy, Aug. 2014, pp. 8–13.

[2] Q.-Y. Zhou, J. Park, and V. Koltun, “Fast global registration,” in European Conference on Computer Vision, Amsterdam, Netherlands,

Oct. 2016, pp. 766–782.

[3] P. Li, J. Wwang, Y. Zhao, Y. Wang, and Y. Yao, “Improved algorithm for point cloud registration based on fast point feature histograms,”

Journal of Applied Remote Sensing, vol. 10, no. 4, 2016.

[4] P. J. Besl and N. D. McKay, “Method for registration of 3-d shapes,” P. S. Schenker, Ed., pp. 586–606, Apr. 1992.

[5] S. M. J. Guivant, “Improving the performance of icp for real-time applications using an approximate nearest neighbour search,” in

Australasian Conference on Robotics and Automation, ACRA, New Zealand, 2012, pp. 3–5.

[6] D. Holz, A.-E. Ichim, F. T. R. B. Rusu, and S. Behnke, “Registration with the point cloud library: A modular framework for aligning in

3-d,” IEEE Robot. Autom. Mag., vol. 20, no. 4, pp. 110–124, Dec. 2015.

[7] Y. Chen and G. Medioni, “Object modeling by registration of multiple images,” International Journal of Image and Vision Computing,

vol. 10, no. 3, pp. 239–256, 1992.

[8] M. Korn, M. Holzkothen, and J. Pauli, “Color supported generalized-icp,” in 2014 International Conference on Computer Vision Theory

and Applications (VISAPP), Lisbon, Portugal, Jan 2014.

[9] H. Men, B. Gebre, and K. Pochiraju, “Color point cloud registration with 4d icp algorithm,” in 2011 IEEE International Conference on

Robotics and Automation, Shanghai, China, May 2011.

[10] J. Park, Q.-Y. Zhou, and V. Koltun, “Colored point cloud registration revisited,” in 2017 IEEE International Conference on Computer

Vision (ICCV), Venice, Italy, Oct 2017.

[11] B. Steder, R. B. Rusu, K. Konolige, and W. Burgard, “Narf: 3d range image features for object recognition,” in Workshop on Defining

and Solving Realistic Perception Problems in Personal Robotics at the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),

Oct. 2010.

[12] P. Scovanner, S. Ali, and M. Shah, “A 3-dimensional sift descriptor and its application to action recognition,” in Proceedings of the 15th

ACM International Conference on Multimedia, Sep. 2007, pp. 357–360.

[13] Y. Zhong, “Intrinsic shape signatures: A shape descriptor for 3d object recognition,” in 2009 12th IEEE International Conference on

Computer Vision Workshop, 2009, pp. 689–696.

[14] E. Rosten and T. Drummond, “Machine learning for high-speed corner detection,” in European Conference on Computer Vision, Graz,

Austria, May 2006, pp. 430–443.

[15] S. Salti, A. Petrelli, F. Tombari, and L. D. Stefano, “On the affinity between 3d detectors and descriptors,” in 2012 Second International

Conference on 3D Imaging, Modeling, Processing, Visualization & Transmission, 2012, pp. 421–431.

[16] R. Hansch, T. Weber, and O. Hellwich, “Comparison of 3d interest point detectors and descriptor for point cloud fusion,” ISPRS Annals

of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 2, no. 3, pp. 57–64, 2014.

[17] G. Turk and M. Levoy, “Zippered polygon meshes from range images,” in Proceedings of the 21st Annual Conference on Computer

Graphics and Interactive Techniques, New York, USA, Jul. 1994, pp. 311–318.

[18] T. Masuda, K. Sakaue, and N. Yokoya, “Registration and integration of multiple range images for 3-d model construction,” in Proceedings

of 13th International Conference on Pattern Recognition, Aug. 1996, pp. 879–883.

[19] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International journal of computer vision, vol. 60, no. 2, pp.

91–110, 2004.

26

[20] R. B. Rusu, N. Blodow, Z. C. Marton, and M. Beetz, “Aligning point cloud views using persistent feature histograms,” in IEEE/RSJ

International Conference on Intelligent Robots and Systems, Nice, France, Sep. 2008, pp. 3384–3391.

[21] F. Tombari, S. Salti, and L. D. Stefano, “Unique signatures of histograms for local surface description,” in European Conference on

Computer Vision, Sep. 2010, pp. 356–359.

[22] A. Frome, D. Huber, R. Kolluri, T. Bülow, and J. Malik, “Recognizing objects in range data using regional point descriptors,” in European

Conference on Computer Vision, May 2004, pp. 224–237.

[23] R. B. Rusu and S. Cousins, “Point cloud library (pcl),” in IEEE International Conference on Robotics and Automation, Shanghai, China,

May 2011, pp. 1–4.

[24] F. Tombari, S. Salti, and L. D. Stefano, “A combined texture-shape descriptor for enhanced 3d feature matching,” in 2011 18th IEEE

International Conference on Image Processing, Sep. 2011, pp. 809–812.

[25] A. Mian, M. Bennamoun, and R. Owens, “On the repeatability and quality of keypoints for local feature-based 3d object retrieval from

cluttered scenes,” International Journal of Computer Vision, vol. 89, no. 2-3, pp. 348–361, 2010.

[26] A. Zaharescu, E. Boyer, K. Varanasi, and R. Horaud, “Surface feature detection and description with applications to mesh matching,” in

2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 373–380.

[27] R. B. Rusu, N. Blodow, and M. Beetz, “Fast point feature histograms (fpfh) for 3d registration,” in IEEE International Conference on

Robotics and Automation, May 2009, pp. 3212–3217.

[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” in Advances in neural

information processing systems (NIPS), 2012, pp. 1097–1105.

[29] Z. Yang, T. Dan, and Y. Yang, “Multi-temporal remote sensing image registration using deep convolutional features,” IEEE Access,

vol. 6, pp. 38 544–38 545, 2018.

[30] D. Maturana and S. Scherer, “Voxnet: A 3d convolutional neural network for real-time object recognition,” in IEEE/RSJ International

Conference on Intelligent Robots and Systems, Sep. 2015, pp. 922–928.

[31] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point sets for 3d classification and segmentation,” in Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 652–660.

[32] J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithm for finding best matches in logarithmic expected time,” ACM Transactions

on Mathematical Software, vol. 3, pp. 209–226, 1977.

[33] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with automatic algorithm configuration,” in VISAPP International

Conference on Computer Vision Theory and Application, 2009, pp. 331–340.

[34] M. Muja and D. Lowe, “Scalable nearest neighbor algorithms for high dimensional data,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 36, pp. 2227–2240, May 2014.

[35] C. Silpa-Anan and R. Hartley, “Optimised kd-trees for fast image descriptor matching,” in 2008 IEEE Conference on Computer Vision

and Pattern Recognition, Jun. 2008.

[36] M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm for model fitting with applications to image analysis and

automated cartography,” Commun. ACM, vol. 26, no. 6, pp. 381–395, 1981.

27

Appendix A

Parameters of Keypoint Detectors

Keypoint Detectors Parameters

NARF
angular_resolution=0.5

support_size=0.03

3D-SIFT

min_scale=0.01

n_octaves=6

n_scales_per_octave=10

min_contrast=0.05

ISS

iss_salient_radius=6*model_resolution

iss_non_max_radius=4*model_resolution

iss_border_radius=1*model_resolution

iss_normal_radius=4*model_resolution

iss_gamma_21=0.975

iss_gamma_32=0.975

iss_min_neighbors=5

TABLE 14: Parameters of Keypoint Detectors.

Appendix B

Parameters of Feature Descriptors

We use a search radius of 2 cm (twice of the grid size of downsampling) for all feature descriptors. For

3DSC, we set its MinimalRadius = 0.2 cm, PointDensityRadius = 0.4cm. The dimensions of all feature

descriptors are listed in Table 15.

Feature Descriptors Descriptor Dimension

FPFH 33

PFH-RGB 250

SHOT 352

Color-SHOT 1344

3DSC 1980

TABLE 15: Dimensions of Feature Descriptors.

28

Appendix C

Parameters of ICP Algorithms

We downsample the clouds with a uniform grid size of 1 cm before applying point-to-point and point-

to-plane ICP. Normal estimation for point-to-plane ICP is performed by KDTreeSearchParamHybrid

with radius = 1 cm and max_nn = 30. For both point-to-point and point-to-plane ICP, we set the max

correspondence distance to 2 cm and use the default termination criteria: relative_fitness = 0.000001,

relative_rmse = 0.000001 and max_iteration = 30.

For color-ICP, following the tutorial in Open3D Document, we apply the algorithm on three different

scales of point clouds. On each scale, normal estimation is performed by KDTreeSearchParamHybrid

with radius = 2*downsampling_grid_size and max_nn = 30. We use the following termination criteria:

relative_fitness = 0.000001, relative_rmse = 0.000001 and max_iteration varies with scales.

Scale Grid size of downsampling Maximum iteration allowed

Rough 8 cm 200

Medium 4 cm 100

Fine 2 cm 50

TABLE 16: Three different scales on which color-ICP is applied.

29

